IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006306.html
   My bibliography  Save this article

Improving port state control through a transfer learning-enhanced XGBoost model

Author

Listed:
  • Wang, Ruihan
  • Zhang, Mingyang
  • Gong, Fuzhong
  • Wang, Shaohan
  • Yan, Ran

Abstract

With the advancements in modern information technology, Port State Control (PSC) inspections, as a crucial measure to protect ship safety and the marine environment, are undergoing an intelligent transformation. This paper aims to streamline the selection process for inspecting high-risk ships by employing a data-driven model to predict the number of deficiencies in ships arriving at ports. A transfer learning-enhanced eXtreme Gradient Boosting (XGBoost) model is proposed by innovatively incorporating sample similarity calculations to adapt the model to the unique characteristics of the target port. This novel model enables the integration of relevant data from other ports, enhancing the predictive performance of the model to specific port conditions. Utilizing PSC inspection records from ports within the Tokyo Memorandum of Understanding (MoU) and choosing the port of Singapore as the target, numerical experiments demonstrate that the proposed model achieves improvements of 1.81 %, 6.08 %, and 3.60 % in the mean absolute error, mean squared error and root mean squared error, respectively, compared to the standard XGBoost model. Furthermore, across various sizes of training samples, the proposed model outperforms other machine learning models. This work may service as a significant step towards exploring the potential of developing data-driven models based on comprehensive data to assess the risk level of foreign ships arriving at ports, ameliorating the PSC inspection process by aiding PSC officers in identifying substandard ships more effectively.

Suggested Citation

  • Wang, Ruihan & Zhang, Mingyang & Gong, Fuzhong & Wang, Shaohan & Yan, Ran, 2025. "Improving port state control through a transfer learning-enhanced XGBoost model," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006306
    DOI: 10.1016/j.ress.2024.110558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.