IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v189y2024ics1366554524002771.html
   My bibliography  Save this article

Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence

Author

Listed:
  • Ghosh, Indranil
  • De, Arijit

Abstract

Prediction of bunker fuel spot prices at a port and understanding the dependence on key determinants is an arduous and challenging activity. The present work strives to analyze the temporal spectrum of daily spot prices of Very Low Sulphur fuel Oil (VLSFO), a critical bunker fuel, in five European Ports, Amsterdam, Antwerp, Gothenburg, Hamburg, and Rotterdam. The lack of prior research in the allied domain has motivated to undertake the modeling of VLSFO spot prices through the lens of applied predictive analytics. The Least Square Boosting (LSBoost) and Facebook Prophet algorithms are used to draw forecasts in multivariate framework leveraging constructs related to the same fuel prices at different ports, different fuel prices at the same ports, economic indicator, etc. The dynamics have been explicitly examined during the Russia-Ukraine military conflict. Additionally, Explainable Artificial Intelligence (XAI) frameworks have been used to demystify the influence of the chosen explanatory variables at a granular scale. The overall findings espouse the effectiveness of the predictive framework in accurately estimating spot prices of VLSFO in any of the selected ports, and the same heavily depends on VLSFO prices at different ports.

Suggested Citation

  • Ghosh, Indranil & De, Arijit, 2024. "Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002771
    DOI: 10.1016/j.tre.2024.103686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    2. Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
    3. Yanhui Chen & Jinrong Lu & Mengmeng Ma, 2022. "How Does Oil Future Price Imply Bunker Price—Cointegration and Prediction Analysis," Energies, MDPI, vol. 15(10), pages 1-17, May.
    4. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    5. Yousaf, Imran & Patel, Ritesh & Yarovaya, Larisa, 2022. "The reaction of G20+ stock markets to the Russia–Ukraine conflict “black-swan” event: Evidence from event study approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 35(C).
    6. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    8. Jana, Rabin K. & Ghosh, Indranil & Wallin, Martin W., 2022. "Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    9. Wang, Shuaian & Qi, Jingwen & Laporte, Gilbert, 2022. "Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 304-321.
    10. O. Faury & A. Cheaitou & P. Givry, 2020. "Best Maritime Transportation Option for the Arctic Crude Oil: A Profit Decision Model," Post-Print hal-04457124, HAL.
    11. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    12. Sen, Abhibasu & Dutta Choudhury, Karabi, 2024. "Forecasting the Crude Oil prices for last four decades using deep learning approach," Resources Policy, Elsevier, vol. 88(C).
    13. Ghosh, Indranil & Jana, Rabin K., 2024. "Clean energy stock price forecasting and response to macroeconomic variables: A novel framework using Facebook's Prophet, NeuralProphet and explainable AI," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    14. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    15. Ghosh, Sugoutam & Lee, Loo Hay & Ng, Szu Hui, 2015. "Bunkering decisions for a shipping liner in an uncertain environment with service contract," European Journal of Operational Research, Elsevier, vol. 244(3), pages 792-802.
    16. Wu, Feng-lin & Zhan, Xu-dong & Zhou, Jia-qi & Wang, Ming-hui, 2023. "Stock market volatility and Russia–Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    17. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    18. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2023. "A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 145-170.
    19. Fuentes, Gabriel, 2021. "Generating bunkering statistics from AIS data: A machine learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    20. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    21. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    22. Manuel Monge, 2022. "Bunker fuel, commodity prices and shipping market indices following the COVID-19 pandemic. A time-frequency analysis," International Economics, CEPII research center, issue 172, pages 29-39.
    23. De, Arijit & Choudhary, Alok & Turkay, Metin & Tiwari, Manoj K., 2021. "Bunkering policies for a fuel bunker management problem for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 289(3), pages 927-939.
    24. Saeed, Naima & Nguyen, Su & Cullinane, Kevin & Gekara, Victor & Chhetri, Prem, 2023. "Forecasting container freight rates using the Prophet forecasting method," Transport Policy, Elsevier, vol. 133(C), pages 86-107.
    25. Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "News-based equity market uncertainty and crude oil volatility," Energy, Elsevier, vol. 222(C).
    26. Xu, Yan & Liu, Tianli & Du, Pei, 2024. "Volatility forecasting of crude oil futures based on Bi-LSTM-Attention model: The dynamic role of the COVID-19 pandemic and the Russian-Ukrainian conflict," Resources Policy, Elsevier, vol. 88(C).
    27. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    28. Bai, Xiwen & Cheng, Liangqi & Iris, Çağatay, 2022. "Data-driven financial and operational risk management: Empirical evidence from the global tramp shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    29. Dhahri, Issam & Chabchoub, Habib, 2007. "Nonlinear goal programming models quantifying the bullwhip effect in supply chain based on ARIMA parameters," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1800-1810, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eisuke Watanabe & Ryuichi Shibasaki, 2023. "Extraction of Bunkering Services from Automatic Identification System Data and Their International Comparisons," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    2. De, Arijit & Choudhary, Alok & Turkay, Metin & Tiwari, Manoj K., 2021. "Bunkering policies for a fuel bunker management problem for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 289(3), pages 927-939.
    3. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    4. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Dynamic programming for optimal ship refueling decision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 63-74.
    6. Tan, Roy & Duru, Okan & Thepsithar, Prapisala, 2020. "Assessment of relative fuel cost for dual fuel marine engines along major Asian container shipping routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    7. Xu, Haonan & Liu, Jiaguo & Xu, Xiaofeng & Chen, Jihong & Yue, Xiaohang, 2024. "The impact of AI technology adoption on operational decision-making in competitive heterogeneous ports☆," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    8. Wang, Cheng & Bouri, Elie & Xu, Yahua & Zhang, Dingsheng, 2023. "Intraday and overnight tail risks and return predictability in the crude oil market: Evidence from oil-related regular news and extreme shocks," Energy Economics, Elsevier, vol. 127(PB).
    9. An Pham Ngoc Nguyen & Martin Crane & Thomas Conlon & Marija Bezbradica, 2024. "Herding Unmasked: Insights into Cryptocurrencies, Stocks and US ETFs," Papers 2407.08069, arXiv.org, revised Dec 2024.
    10. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Granát, Marcell P. & Lehmann, Kristóf & Nagy, Olivér & Neszveda, Gábor, 2023. "Expect the unexpected: Did the equity markets anticipate the Russo-Ukrainian war?," Finance Research Letters, Elsevier, vol. 58(PA).
    12. Wu, Lingxiao & Wang, Shuaian & Laporte, Gilbert, 2021. "The Robust Bulk Ship Routing Problem with Batched Cargo Selection," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 124-159.
    13. Peng, Wenhao & Bai, Xiwen, 2022. "Prospects for improving shipping companies’ profit margins by quantifying operational strategies and market focus approach through AIS data," Transport Policy, Elsevier, vol. 128(C), pages 138-152.
    14. Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
    15. Qiao, Gaoxiu & Ma, Xuekun & Jiang, Gongyue & Wang, Lu, 2024. "Crude oil volatility index forecasting: New evidence based on positive and negative jumps from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 415-437.
    16. Bechir Raggad & Elie Bouri, 2023. "Quantile Dependence between Crude Oil Returns and Implied Volatility: Evidence from Parametric and Nonparametric Tests," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    17. Neifar, Malika & Hdider, Anis, 2024. "Role of Crude Oil, Natural Gas and Wheat Prices and the Impact of the ‎Russian-Ukrainian War on the Investor Social Network Sentiment; Evidence ‎from the US Stock Market," MPRA Paper 120920, University Library of Munich, Germany.
    18. Yanhui Chen & Jinrong Lu & Mengmeng Ma, 2022. "How Does Oil Future Price Imply Bunker Price—Cointegration and Prediction Analysis," Energies, MDPI, vol. 15(10), pages 1-17, May.
    19. Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    20. Yan, Xiang & Bai, Jiancheng & Li, Xiafei & Chen, Zhonglu, 2022. "Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures?," Resources Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.