IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v175y2023ics1366554523001606.html
   My bibliography  Save this article

Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits

Author

Listed:
  • Fang, Chao
  • Han, Zonglei
  • Wang, Wei
  • Zio, Enrico

Abstract

Unmanned aerial vehicles (UAVs) are widely used for surveillance in both civilian and military scenarios. The utilization of UAVs provides an opportunity for monitoring landslide-prone areas by automatically collecting geological information, thereby reducing the risks and the time required to be working in harsh environments. Due to the maximum travel time limit of UAVs and the geographical dispersion of landslide-prone areas, multiple UAVs are dispatched for surveillance tasks, and landslide-prone areas with high emergency priorities require mandatory visits. Here, we investigate a team orienteering problem with mandatory visits (TOPMV) for routing multi-UAVs to monitor scattered landslide-prone areas, with mandatory visits on those in poorly stable states. The proposed TOPMV aims to plan the optimal multi-UAV paths for maximizing the total amount of collected geological information. To solve the TOPMV with a realistic scale, we develop a large neighborhood search (LNS) algorithm embedding a neural network heuristic (NNH), in which the embedded NNH learns to perform adaptive destroy operators through a hierarchical recurrent graph convolutional network (HRGCN). We consider a real-world case study for monitoring of landslide-prone areas in three counties in southern Shaanxi Province, China. Finally, we test the proposed NNH on both small- and large-scale benchmark instances of the team orienteering problem. The experimental results demonstrate that our proposed NNH exhibits higher efficiency and provides better solution quality than state-of-the-art methods, especially in large-scale settings.

Suggested Citation

  • Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:transe:v:175:y:2023:i:c:s1366554523001606
    DOI: 10.1016/j.tre.2023.103172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523001606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    2. Kyriakakis, Nikolaos A. & Marinaki, Magdalene & Matsatsinis, Nikolaos & Marinakis, Yannis, 2022. "A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning," European Journal of Operational Research, Elsevier, vol. 300(3), pages 992-1004.
    3. Jan Christiaens & Greet Vanden Berghe, 2020. "Slack Induction by String Removals for Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(2), pages 417-433, March.
    4. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    5. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Shen, Lixin & Wang, Yaodong & Liu, Kunpeng & Yang, Zaili & Shi, Xiaowen & Yang, Xu & Jing, Ke, 2020. "Synergistic path planning of multi-UAVs for air pollution detection of ships in ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Yang, Weibo & Ke, Liangjun & Wang, David Z.W. & Lam, Jasmine Siu Lee, 2021. "A branch-price-and-cut algorithm for the vehicle routing problem with release and due dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    8. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2014. "Optimization-Based Adaptive Large Neighborhood Search for the Production Routing Problem," Transportation Science, INFORMS, vol. 48(1), pages 20-45, February.
    9. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    10. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    11. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    12. Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    13. Christos D. Tarantilis & Afroditi K. Anagnostopoulou & Panagiotis P. Repoussis, 2013. "Adaptive Path Relinking for Vehicle Routing and Scheduling Problems with Product Returns," Transportation Science, INFORMS, vol. 47(3), pages 356-379, August.
    14. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    15. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    16. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
    17. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    18. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1998. "Solving the Orienteering Problem through Branch-and-Cut," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 133-148, May.
    19. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    20. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    21. Ke, Liangjun & Zhai, Laipeng & Li, Jing & Chan, Felix T.S., 2016. "Pareto mimic algorithm: An approach to the team orienteering problem," Omega, Elsevier, vol. 61(C), pages 155-166.
    22. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    23. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Anne & Glock, Katharina & Radaschewski, Frank, 2021. "Planning profitable tours for field sales forces: A unified view on sales analytics and mathematical optimization," Omega, Elsevier, vol. 105(C).
    2. Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
    3. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    4. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    5. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    6. Kirac, Emre & Milburn, Ashlea Bennett, 2018. "A general framework for assessing the value of social data for disaster response logistics planning," European Journal of Operational Research, Elsevier, vol. 269(2), pages 486-500.
    7. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    8. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Pablo A. Miranda-Gonzalez & Javier Maturana-Ross & Carola A. Blazquez & Guillermo Cabrera-Guerrero, 2021. "Exact Formulation and Analysis for the Bi-Objective Insular Traveling Salesman Problem," Mathematics, MDPI, vol. 9(21), pages 1-33, October.
    10. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    11. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    12. Alejandro Estrada-Moreno & Albert Ferrer & Angel A. Juan & Javier Panadero & Adil Bagirov, 2020. "The Non-Smooth and Bi-Objective Team Orienteering Problem with Soft Constraints," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    13. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    14. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    15. He, Mu & Wu, Qinghua & Benlic, Una & Lu, Yongliang & Chen, Yuning, 2024. "An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem," European Journal of Operational Research, Elsevier, vol. 318(3), pages 778-801.
    16. Cinar, Ahmet & Salman, F. Sibel & Bozkaya, Burcin, 2021. "Prioritized single nurse routing and scheduling for home healthcare services," European Journal of Operational Research, Elsevier, vol. 289(3), pages 867-878.
    17. Erika M. Herrera & Javier Panadero & Patricia Carracedo & Angel A. Juan & Elena Perez-Bernabeu, 2022. "Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    18. Ke, Liangjun & Zhai, Laipeng & Li, Jing & Chan, Felix T.S., 2016. "Pareto mimic algorithm: An approach to the team orienteering problem," Omega, Elsevier, vol. 61(C), pages 155-166.
    19. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.
    20. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:175:y:2023:i:c:s1366554523001606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.