IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v181y2024ics1366554523003551.html
   My bibliography  Save this article

Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships

Author

Listed:
  • Li, Huanhuan
  • Xing, Wenbin
  • Jiao, Hang
  • Yang, Zaili
  • Li, Yan

Abstract

It is critical to have accurate ship trajectory prediction for collision avoidance and intelligent traffic management of manned ships and emerging Maritime Autonomous Surface Ships (MASS). Deep learning methods for accurate prediction based on AIS data have emerged as a contemporary maritime transportation research focus. However, concerns about its accuracy and computational efficiency widely exist across both academic and industrial sectors, necessitating the discovery of new solutions. This paper aims to develop a new prediction approach called Deep Bi-Directional Information-Empowered (DBDIE) by utilising integrated multiple networks and an attention mechanism to address the above issues. The new DBDIE model extracts valuable features by fusing the Bi-directional Long Short-Term Memory (Bi-LSTM) and the Bi-directional Gated Recurrent Unit (Bi-GRU) neural networks. Additionally, the weights of the two bi-directional units are optimised using an attention mechanism, and the final prediction results are obtained through a weight self-adjustment mechanism. The effectiveness of the proposed model is verified through comprehensive comparisons with state-of-the-art deep learning methods, including Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bi-LSTM, Bi-GRU, Sequence to Sequence (Seq2Seq), and Transformer neural networks. The experimental results demonstrate that the new DBDIE model achieves the most satisfactory prediction outcomes than all other classical methods, providing a new solution to improving the accuracy and effectiveness of predicting ship trajectories, which becomes increasingly important in the era of the safe navigation of mixed manned ships and MASS. As a result, the findings can aid the development and implementation of proactive preventive measures to avoid collisions, enhance maritime traffic management efficiency, and ensure maritime safety.

Suggested Citation

  • Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yang, Zaili & Li, Yan, 2024. "Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003551
    DOI: 10.1016/j.tre.2023.103367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Xiwen & Hou, Yao & Yang, Dong, 2021. "Choose clean energy or green technology? Empirical evidence from global ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    2. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    5. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Cheng-Hong Yang & Guan-Cheng Lin & Chih-Hsien Wu & Yen-Hsien Liu & Yi-Chuan Wang & Kuo-Chang Chen, 2022. "Deep Learning for Vessel Trajectory Prediction Using Clustered AIS Data," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    7. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    8. Yang, Dong & Wu, Lingxiao & Wang, Shuaian, 2021. "Can we trust the AIS destination port information for bulk ships?–Implications for shipping policy and practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Li, Huanhuan & Yang, Zaili, 2023. "Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    10. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Alexandra Fratila (Adam) & Ioana Andrada Gavril (Moldovan) & Sorin Cristian Nita & Andrei Hrebenciuc, 2021. "The Importance of Maritime Transport for Economic Growth in the European Union: A Panel Data Analysis," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    12. Li, Yiliang & Bai, Xiwen & Wang, Qi & Ma, Zhongjun, 2022. "A big data approach to cargo type prediction and its implications for oil trade estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    13. Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    14. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    15. Lixiang Zhang & Yian Zhu & Jiang Su & Wei Lu & Jiayu Li & Ye Yao, 2022. "A Hybrid Prediction Model Based on KNN-LSTM for Vessel Trajectory," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    2. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    3. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Wang, Yang & Ye, Ting & Zio, Enrico & Wang, Tengfei & Wu, Bing, 2024. "A blockchain-based credibility evaluation scheme for navigational event dissemination in the internet of ships," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Peng, Wenhao & Bai, Xiwen, 2022. "Prospects for improving shipping companies’ profit margins by quantifying operational strategies and market focus approach through AIS data," Transport Policy, Elsevier, vol. 128(C), pages 138-152.
    6. Minxi Wang & Ping Liu & Rui Zhang & Zhi Li & Xin Li, 2020. "A Scientometric Analysis of Global Health Research," IJERPH, MDPI, vol. 17(8), pages 1-19, April.
    7. Izaskun Alvarez-Meaza & Enara Zarrabeitia-Bilbao & Rosa Maria Rio-Belver & Gaizka Garechana-Anacabe, 2020. "Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map," Sustainability, MDPI, vol. 12(6), pages 1-25, March.
    8. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    9. Jingqi Gao & Xiang Wu & Xiaowei Luo & Shukai Guan, 2021. "Scientometric Analysis of Safety Sign Research: 1990–2019," IJERPH, MDPI, vol. 18(1), pages 1-15, January.
    10. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    11. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    12. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    13. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    14. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    15. Yanrong Qiu & Kaihuai Liao & Yanting Zou & Gengzhi Huang, 2022. "A Bibliometric Analysis on Research Regarding Residential Segregation and Health Based on CiteSpace," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    16. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    17. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    18. Kai Hu & Huayi Wu & Kunlun Qi & Jingmin Yu & Siluo Yang & Tianxing Yu & Jie Zheng & Bo Liu, 2018. "A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1031-1068, March.
    19. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    20. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.