IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v82y2020ics0966692319301401.html
   My bibliography  Save this article

Space-time dynamics: A modeling approach for commuting departure time on linked datasets

Author

Listed:
  • Dong, Han
  • Cirillo, Cinzia

Abstract

Commuters' departure time related decisions are important in time geography. Analytic tools have been proposed to capture the inherent choice determinants both in time and space. Although the dynamic aspects of the problem have been identified, most of the existing studies are based on static models. In this paper, a dynamic modeling framework is proposed to explore the relationship between commuters' departure time choices and the evolution of en route traffic. A data linkage method is developed to create an integrated dataset that enables the observation of commuters' reaction to changes in travel time and traffic conditions over time. A regional household travel survey is linked to travel information obtained from the Google Maps application program interface (API), creating a synthetic longitudinal dataset. Two decision rules are applied to model commuters' response to the evolution of traffic. The results indicate that travel time, distance to work location, flexibility in working schedule, expected arrival time, and commuters' sociodemographic influence departure time choices. It is also found that accounting for dynamics improves model fit and out-of-sample predictions. Both the dynamic model and the proposed data linkage method contribute to the understanding of human activities in space and time and can be used to enhance transportation demand analysis and urban policy studies.

Suggested Citation

  • Dong, Han & Cirillo, Cinzia, 2020. "Space-time dynamics: A modeling approach for commuting departure time on linked datasets," Journal of Transport Geography, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319301401
    DOI: 10.1016/j.jtrangeo.2019.102548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319301401
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    3. Cirillo, Cinzia & Bastin, Fabian & Hetrakul, Pratt, 2018. "Dynamic discrete choice model for railway ticket cancellation and exchange decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 137-146.
    4. Ram Pendyala & Toshiyuki Yamamoto & Ryuichi Kitamura, 2002. "On the formulation of time-space prisms to model constraints on personal activity-travel engagement," Transportation, Springer, vol. 29(1), pages 73-94, February.
    5. Cinzia Cirillo & Renting Xu & Fabian Bastin, 2016. "A Dynamic Formulation for Car Ownership Modeling," Transportation Science, INFORMS, vol. 50(1), pages 322-335, February.
    6. Martin Dijst, 2004. "ICTs and Accessibility: An Action Space Perspective on the Impact of New Information and Communication Technologies," Advances in Spatial Science, in: Michel Beuthe & Veli Himanen & Aura Reggiani & Luca Zamparini (ed.), Transport Developments and Innovations in an Evolving World, chapter 3, pages 27-46, Springer.
    7. Liu, Yan & Cirillo, Cinzia, 2018. "A generalized dynamic discrete choice model for green vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 288-302.
    8. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    9. Vaughn, Kenneth M. & Abdel-aty, Mohamed A. & Kitamura, Ryichi & Jovanis, Paul P. & Yang, Hai, 1993. "Experimental Analysis And Modeling Of Sequential Route Choice Under ATIS In A Simple Traffic Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8hs4x4ng, Institute of Transportation Studies, UC Berkeley.
    10. Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
    11. Hess, Stephane & Daly, Andrew & Rohr, Charlene & Hyman, Geoff, 2007. "On the development of time period and mode choice models for use in large scale modelling forecasting systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 802-826, November.
    12. de Jong, Gerard & Daly, Andrew & Pieters, Marits & Vellay, Carine & Bradley, Mark & Hofman, Frank, 2003. "A model for time of day and mode choice using error components logit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 245-268, May.
    13. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    14. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    15. Bhat, Chandra R. & Steed, Jennifer L., 2002. "A continuous-time model of departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 207-224, March.
    16. Mahmassani, Hani S. & Chang, Gang-Len, 1986. "Experiments with departure time choice dynamics of urban commuters," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 297-320, August.
    17. Donald G. Janelle & Andrew Gillespie, 2004. "Space--time constructs for linking information and communication technologies with issues in sustainable transportation," Transport Reviews, Taylor & Francis Journals, vol. 24(6), pages 665-677, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    2. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    3. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    4. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
    5. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    6. José Holguín-Veras & Iván Sánchez-Díaz & Benjamin Reim, 2016. "ETC adoption, time-of-travel choice, and comprehensive policies to enhance time-of-day pricing: a stated preference investigation," Transportation, Springer, vol. 43(2), pages 273-299, March.
    7. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    8. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.
    9. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    10. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    11. Andrew Daly & Stephane Hess & Geoff Hyman & John Polak & Charlene Rohr, 2005. "Modelling departure time and mode choice," ERSA conference papers ersa05p688, European Regional Science Association.
    12. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    13. Jason D. Lemp & Kara M. Kockelman & Paul Damien, 2012. "A Bivariate Multinomial Probit Model for Trip Scheduling: Bayesian Analysis of the Work Tour," Transportation Science, INFORMS, vol. 46(3), pages 405-424, August.
    14. Thorhauge, Mikkel & Cherchi, Elisabetta & Rich, Jeppe, 2016. "How flexible is flexible? Accounting for the effect of rescheduling possibilities in choice of departure time for work trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 177-193.
    15. de Jong, Gerard & Kouwenhoven, Marco & Ruijs, Kim & van Houwe, Pieter & Borremans, Dana, 2016. "A time-period choice model for road freight transport in Flanders based on stated preference data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 20-31.
    16. Urena Serulle, Nayel & Cirillo, Cinzia, 2017. "The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 447-463.
    17. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    18. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    19. Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
    20. Li, Haiying & Li, Xian & Xu, Xinyue & Liu, Jun & Ran, Bin, 2018. "Modeling departure time choice of metro passengers with a smart corrected mixed logit model - A case study in Beijing," Transport Policy, Elsevier, vol. 69(C), pages 106-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319301401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.