IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v25y1991i6p433-438.html
   My bibliography  Save this article

Reconsidering the multinomial probit model

Author

Listed:
  • Horowitz, Joel L.

Abstract

Recently developed computational methods have greatly reduced the difficulty of estimating multinomial probit models and may soon make multinomial probit a computationally feasible option in applied travel demand modeling. This paper discusses some of the benefits and costs that are associated with the use of multinomial probit in demand modeling. It is argued that although there are situations in which multinomial probit is essential for achieving a satisfactory model, most problems with existing demand models are unlikely to be mitigated by the use of multinomial probit.

Suggested Citation

  • Horowitz, Joel L., 1991. "Reconsidering the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 433-438, December.
  • Handle: RePEc:eee:transb:v:25:y:1991:i:6:p:433-438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(91)90036-I
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthik K. Srinivasan & Hani S. Mahmassani, 2005. "A Dynamic Kernel Logit Model for the Analysis of Longitudinal Discrete Choice Data: Properties and Computational Assessment," Transportation Science, INFORMS, vol. 39(2), pages 160-181, May.
    2. Can, Vo Van, 2013. "Estimation of travel mode choice for domestic tourists to Nha Trang using the multinomial probit model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 149-159.
    3. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
    4. Sanjana Hossain & Md. Sami Hasnine & Khandker Nurul Habib, 2021. "A latent class joint mode and departure time choice model for the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1217-1239, June.
    5. Ory, D T & Mokhtarian, Patricia L, 2005. "Don’t Work, Work at Home, or Commute? Discrete Choice Models of the Decision for San Francisco Bay Area Residents," Institute of Transportation Studies, Working Paper Series qt71q8b94r, Institute of Transportation Studies, UC Davis.
    6. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Ory, David T. & Mokhtarian, Patricia L., 2005. "Modeling the Joint Labor-Commute Engagement Decisions of San Francisco Bay Area Residents," University of California Transportation Center, Working Papers qt7600m6qv, University of California Transportation Center.
    8. Tang, Wei & Mokhtarian, Patricia L & Handy, Susan L, 2008. "The Role of Neighborhood Characteristics in the Adoption and Frequency of Working at Home: Empirical Evidence from Northern California," Institute of Transportation Studies, Working Paper Series qt13x2q3rb, Institute of Transportation Studies, UC Davis.
    9. Bhat, Chandra R., 1997. "Covariance heterogeneity in nested logit models: Econometric structure and application to intercity travel," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 11-21, February.
    10. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    11. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    12. Joachim Grammig & Reinhard Hujer & Michael Scheidler, 2005. "Discrete choice modelling in airline network management," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 467-486, May.
    13. Fiore Tinessa & Vittorio Marzano & Andrea Papola, 2021. "Choice probabilities and correlations in closed-form route choice models: specifications and drawbacks," Papers 2110.07224, arXiv.org.
    14. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    15. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    16. Lambe, Thomas A., 1996. "Driver choice of parking in the city," Socio-Economic Planning Sciences, Elsevier, vol. 30(3), pages 207-219, September.
    17. Bhat, Chandra R., 1998. "Accommodating flexible substitution patterns in multi-dimensional choice modeling: formulation and application to travel mode and departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 455-466, September.
    18. GRAMMIG, Joachim & HUJER, Reinhard & SCHEIDLER, Michael, 2001. "The econometrics of airline network management," LIDAM Discussion Papers CORE 2001055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Qiang Liu & Thomas J. Steenburgh & Sachin Gupta, 2015. "The Cross Attributes Flexible Substitution Logit: Uncovering Category Expansion and Share Impacts of Marketing Instruments," Marketing Science, INFORMS, vol. 34(1), pages 144-159, January.
    20. Han, Yan & Zhang, Tiantian & Wang, Meng, 2020. "Holiday travel behavior analysis and empirical study with Integrated Travel Reservation Information usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 130-151.
    21. Guang Yang & Yan Han & Hao Gong & Tiantian Zhang, 2020. "Spatial-Temporal Response Patterns of Tourist Flow under Real-Time Tourist Flow Diversion Scheme," Sustainability, MDPI, vol. 12(8), pages 1-28, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:25:y:1991:i:6:p:433-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.