IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v50y2023i5d10.1007_s11116-022-10296-7.html
   My bibliography  Save this article

Calibration of sightseeing tour choices considering multiple decision criteria with diminishing reward

Author

Listed:
  • Kai Shen

    (Kyoto University)

  • Jan-Dirk Schmöcker

    (Kyoto University)

  • Wenzhe Sun

    (Kyoto University)

  • Ali Gul Qureshi

    (Kyoto University)

Abstract

For an increasing number of cities, managing tourism becomes an important task and accordingly better understanding of touristic travel patterns is required. We model the sightseeing-tour choice within a city as a utility maximization problem. For this, attractions and their intrinsic utilities as well as tourists’ preferences are evaluated over multiple dimensions in order to explain the variance in tourists’ choice of POIs (points of interest) including the visiting order. Furthermore, the choice of destinations is considered “history-dependent” in that there is diminishing marginal utility gained by visiting additional POIs. Given the many potential sights, this leads to a large combinatorial problem. We solve this with a variant of a TTDP (tourist trip design problem) with the modified distance that evaluates omitted POIs and geographical distance between estimated and observed tours. The approach is applied to revealed-preference survey data from Kyoto, Japan, where tourists stated their visited attractions among 37 touristic areas. We discuss model fit and scenarios with the existing and a modified transport network.

Suggested Citation

  • Kai Shen & Jan-Dirk Schmöcker & Wenzhe Sun & Ali Gul Qureshi, 2023. "Calibration of sightseeing tour choices considering multiple decision criteria with diminishing reward," Transportation, Springer, vol. 50(5), pages 1897-1921, October.
  • Handle: RePEc:kap:transp:v:50:y:2023:i:5:d:10.1007_s11116-022-10296-7
    DOI: 10.1007/s11116-022-10296-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-022-10296-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-022-10296-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soora Rasouli & Harry Timmermans, 2014. "Activity-based models of travel demand: promises, progress and prospects," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(1), pages 31-60, March.
    2. Vansteenwegen, Pieter & Souffriau, Wouter & Berghe, Greet Vanden & Oudheusden, Dirk Van, 2009. "A guided local search metaheuristic for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 118-127, July.
    3. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    4. Zheng, Weimin & Huang, Xiaoting & Li, Yuan, 2017. "Understanding the tourist mobility using GPS: Where is the next place?," Tourism Management, Elsevier, vol. 59(C), pages 267-280.
    5. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    6. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    3. Naqavi, Fatemeh & Sundberg, Marcus & Västberg, Oskar Blom & Karlström, Anders & Hugosson, Muriel Beser, 2023. "Mobility constraints and accessibility to work: Application to Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    4. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    5. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    6. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    7. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    8. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    9. C. Angelo Guevara & Caspar G. Chorus & Moshe E. Ben-Akiva, 2016. "Sampling of Alternatives in Random Regret Minimization Models," Transportation Science, INFORMS, vol. 50(1), pages 306-321, February.
    10. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    11. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    12. Luo, Zhixing & Cheang, Brenda & Lim, Andrew & Zhu, Wenbin, 2013. "An adaptive ejection pool with toggle-rule diversification approach for the capacitated team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(3), pages 673-682.
    13. Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
    14. Mogens Fosgerau & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2021. "A perturbed utility route choice model," Papers 2103.13784, arXiv.org, revised Sep 2021.
    15. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    16. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    17. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    18. Mai, Tien & Frejinger, Emma & Bastin, Fabian, 2015. "A misspecification test for logit based route choice models," Economics of Transportation, Elsevier, vol. 4(4), pages 215-226.
    19. Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
    20. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:50:y:2023:i:5:d:10.1007_s11116-022-10296-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.