Author
Listed:
- Yuhao Wang
(Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China)
- Jie Liu
(Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK)
- Zhouyu Li
(Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China)
Abstract
Modeling cascading failure in an urban rail transit network (URTN) is essential for evaluating the impact of interruptions and network resilience. Here, a weighted coupled map lattice (CML) model is proposed. This model combines structural network coupling and passenger flow coupling to analyze the cascading failure process triggered by a station failure. Four network performance indicators are developed: network efficiency and subgraph connectivity from the network structure perspective, and OD connectivity and the reciprocal of average transfers from the network service perspective. The resilience of a URTN is measured based on the network performance indicators during station failures. Application of the model to the Wuhan URTN showed that station failure with high numbers of boarding and alighting passengers caused the highest decline in network resilience. The network’s structural resilience was stronger than its service resilience. The relationship between the percentage of failed stations and network performance indicated a significant threshold effect at a 5% failure percentage. Specifically, network performance decreased rapidly when the percentage of failed stations was below 5% and more gradually when it exceeded this threshold. Moreover, network performance exhibited high sensitivity to increases in external perturbation intensity when the failure station percentage was below 5%, but this sensitivity diminished significantly once the percentage surpassed 5%.
Suggested Citation
Yuhao Wang & Jie Liu & Zhouyu Li, 2025.
"The Resilience of an Urban Rail Transit Network: An Evaluation Approach Based on a Weighted Coupled Map Lattice Model,"
Mathematics, MDPI, vol. 13(4), pages 1-16, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:608-:d:1590026
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:608-:d:1590026. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.