IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v181y2024ics1366554523003472.html
   My bibliography  Save this article

Modelling the pedestrian’s willingness to walk on the subway platform: A novel approach to analyze in-vehicle crowd congestion

Author

Listed:
  • Huang, Di
  • Yang, Yuwei
  • Peng, Xinyi
  • Huang, Jiangyan
  • Mo, Pengli
  • Liu, Zhiyuan
  • Wang, Shuaian

Abstract

A common behavior pattern observed on subway platforms is that pedestrians walk downstairs from the escalator and choose a door to wait for a rail train. Interestingly, pedestrians often walk to farther doors rather than the nearest one to the escalator. This paper proposes a new concept, called willingness to walk (WTW), to describe pedestrians' behavioral characteristics, including their psychological tendency to stay in their original queue or to walk to farther queues. Two regression models are proposed to quantitatively measure WTW, both of which are calibrated using an inequality-based least square method. Observation data are collected through field investigation and simulation software. The calibration results confirm the existence of WTW. The proposed method is then applied to analyze the distribution of waiting passengers on the platform and the level of in-vehicle crowding. Simulation results demonstrate that the proposed WTW models can reliably approximate the actual passenger load in carriages.

Suggested Citation

  • Huang, Di & Yang, Yuwei & Peng, Xinyi & Huang, Jiangyan & Mo, Pengli & Liu, Zhiyuan & Wang, Shuaian, 2024. "Modelling the pedestrian’s willingness to walk on the subway platform: A novel approach to analyze in-vehicle crowd congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003472
    DOI: 10.1016/j.tre.2023.103359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kyung Min & Hong, Sung-Pil & Ko, Suk-Joon & Kim, Dowon, 2015. "Does crowding affect the path choice of metro passengers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 292-304.
    2. Sun, Lishan & Yuan, Guang & Yao, Liya & Cui, Li & Kong, Dewen, 2021. "Study on strategies for alighting and boarding in subway stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Kim, Hyunmi & Kwon, Sohee & Wu, Seung Kook & Sohn, Keemin, 2014. "Why do passengers choose a specific car of a metro train during the morning peak hours?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 249-258.
    4. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    5. Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
    6. Nattanon Luangboriboon & Sebastian Seriani & Taku Fujiyama, 2021. "The influence of the density inside a train carriage on passenger boarding rate," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 9(5), pages 445-460, September.
    7. Jiping Fang & Taku Fujiyama & Howard Wong, 2019. "Modelling passenger distribution on metro platforms based on passengers’ choices for boarding cars," Transportation Planning and Technology, Taylor & Francis Journals, vol. 42(5), pages 442-458, July.
    8. Zhang, Wenwei & Xu, Min & Wang, Shuaian, 2023. "Joint location and pricing optimization of self-service in urban logistics considering customers’ choice behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    9. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    10. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    11. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.
    12. Huang, Kang & Liao, Feixiong, 2023. "A novel two-stage approach for energy-efficient timetabling for an urban rail transit network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    13. Qu, Yunchao & Xiao, Yao & Liu, Hao & Yin, Haodong & Wu, Jianjun & Qu, Qiushi & Li, Daqing & Tang, Tao, 2019. "Analyzing crowd dynamic characteristics of boarding and alighting process in urban metro stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    14. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    15. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    16. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    17. Huang, Di & Liu, Zhiyuan & Liu, Pan & Chen, Jun, 2016. "Optimal transit fare and service frequency of a nonlinear origin-destination based fare structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 1-19.
    18. Yuan, Yin & Li, Shukai & Yang, Lixing & Gao, Ziyou, 2022. "Real-time optimization of train regulation and passenger flow control for urban rail transit network under frequent disturbances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    19. Zhang, Ping & Sun, Huijun & Qu, Yunchao & Yin, Haodong & Jin, Jian Gang & Wu, Jianjun, 2021. "Model and algorithm of coordinated flow controlling with station-based constraints in a metro system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    20. Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    21. Yang, Xiaoxia & Zhang, Rui & Pan, Fuquan & Yang, Yi & Li, Yongxing & Yang, Xiaoli, 2022. "Stochastic user equilibrium path planning for crowd evacuation at subway station based on social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    22. Ding, Heng & Di, Yunran & Zheng, Xiaoyan & Liu, Kai & Zhang, Weihua & Zheng, Lingling, 2021. "Passenger arrival distribution model and riding guidance on an urban rail transit platform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    23. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    24. Qu, Yunchao & Xiao, Yao & Wu, Jianjun & Tang, Tao & Gao, Ziyou, 2018. "Modeling detour behavior of pedestrian dynamics under different conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1153-1167.
    25. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    26. Xu, Guangming & Liu, Yihan & Gao, Yihan & Liu, Wei, 2023. "Integrated optimization of train stopping plan and seat allocation scheme for railway systems under equilibrium travel choice and elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Yang & Nirajan Shiwakoti & Richard Tay, 2023. "Exploring Melbourne Metro Train Passengers’ Pre-Boarding Behaviors and Perceptions," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    2. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    3. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    4. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Wu, Pei-Yang & Guo, Ren-Yong & Lin, Zhiyuan & Liu, Ronghui & Xu, Pu, 2024. "Improving passenger travel efficiency through a dynamic autonomous non-stop rail transit system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    6. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    8. Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
    9. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    11. Wang, Shuaian & Zhang, Wei & Qu, Xiaobo, 2018. "Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 318-335.
    12. Zhang, Jin & Qu, Xiaobo & Wang, Shuaian, 2018. "Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 41-52.
    13. Sebastian Seriani & Vicente Aprigliano Fernandes & Paola Moraga & Fabian Cortes, 2022. "Experimental Location of the Vertical Handrail to Improve the Accessibility of Wheelchair Passengers Boarding and Alighting at Metro Stations—A Pilot Study," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    14. Liudan Jiao & Liyin Shen & Chenyang Shuai & Yongtao Tan & Bei He, 2017. "Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    15. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    16. Zheng, Zhongxing & Wang, Heng & Liu, Weiming & Peng, Liru, 2023. "Toward real-time congestion measurement of passenger flow on platform screen doors based on surveillance videos analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    17. Svanberg , Lisa & Pyddoke, Roger, 2020. "Policies for on-board crowding in public transportation : a literature review," Working Papers 2020:6, Swedish National Road & Transport Research Institute (VTI).
    18. Zhiyuan Huang & Ruihua Xu & Wei (David) Fan & Feng Zhou & Wei Liu, 2019. "Service-Oriented Load Balancing Approach to Alleviating Peak-Hour Congestion in a Metro Network Based on Multi-Path Accessibility," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    19. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    20. Sun, Lishan & Luo, Wei & Yao, Liya & Qiu, Shi & Rong, Jian, 2017. "A comparative study of funnel shape bottlenecks in subway stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 14-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.