IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v93y2016ipap450-469.html
   My bibliography  Save this article

Dynamic collective routing using crowdsourcing data

Author

Listed:
  • Liu, Siyuan
  • Qu, Qiang

Abstract

With the development of information technology, crowdsourcing data from a crowd of cooperative vehicles and online social platforms have been becoming available. The crowdsourcing data, reflecting real-time context of road segments in transportation systems, enable vehicles to be routed adaptively in uncertain and dynamic traffic environments. We consider the problem of adaptively routing a fleet of cooperative vehicles within a road network. To tackle this problem, we first propose a Crowdsourcing Dynamic Congestion Model. The model is based on topic-aware Gaussian Process considering the crowdsourced data collected from social platforms and probing vehicle traces that can effectively characterize both the dynamics and the uncertainty of road conditions. Our model is efficient and thus facilitates real-time adaptive routing in the face of uncertainty. Using this congestion model, we develop efficient algorithms for non-myopic adaptive routing to minimize the collective travel time of all vehicles in the entire transportation system. A key property of our approach is the ability to efficiently reason about the long-term value of exploration, which enables collectively balancing the exploration/exploitation trade-off for entire fleets of vehicles. Our approach is validated by real-life traffic and geo-tagged social network data from two large cities. Our congestion model is shown to be effective in modeling dynamic congestion conditions. Our routing algorithms also generate significantly faster routes compared to standard baselines, and approximate optimal performance compared to an omniscient routing algorithm. We also present the results from a preliminary field study, which showcases the efficacy of our approach.

Suggested Citation

  • Liu, Siyuan & Qu, Qiang, 2016. "Dynamic collective routing using crowdsourcing data," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 450-469.
  • Handle: RePEc:eee:transb:v:93:y:2016:i:pa:p:450-469
    DOI: 10.1016/j.trb.2016.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515300345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dion, Francois & Rakha, Hesham, 2006. "Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 745-766, November.
    2. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    3. Madireddy, Manini & Kumara, Soundar & Medeiros, D.J. & Shankar, Venky N., 2015. "Leveraging social networks for efficient hurricane evacuation," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 199-212.
    4. Bai, Ruibin & Xue, Ning & Chen, Jianjun & Roberts, Gethin Wyn, 2015. "A set-covering model for a bidirectional multi-shift full truckload vehicle routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 134-148.
    5. Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
    6. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.
    7. Jin, Wen-Long & Recker, Wilfred W., 2006. "Instantaneous information propagation in a traffic stream through inter-vehicle communication," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 230-250, March.
    8. Du, Lili & Han, Lanshan & Li, Xiang-Yang, 2014. "Distributed coordinated in-vehicle online routing using mixed-strategy congestion game," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 1-17.
    9. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
    10. Timmermans, Harry J.P. & Zhang, Junyi, 2009. "Modeling household activity travel behavior: Examples of state of the art modeling approaches and research agenda," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 187-190, February.
    11. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    12. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    13. Fu, Liping, 2001. "An adaptive routing algorithm for in-vehicle route guidance systems with real-time information," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 749-765, September.
    14. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    15. An, Shi & Cui, Na & Li, Xiaopeng & Ouyang, Yanfeng, 2013. "Location planning for transit-based evacuation under the risk of service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 1-16.
    16. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    17. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    18. Koning, A.J. & Peng, L., 2005. "Goodness-of-fit tests for a heavy tailed distribution," Econometric Institute Research Papers EI 2005-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Jean-François Cordeau & Michel Gendreau & Alain Hertz & Gilbert Laporte & Jean-Sylvain Sormany, 2005. "New Heuristics for the Vehicle Routing Problem," Springer Books, in: André Langevin & Diane Riopel (ed.), Logistics Systems: Design and Optimization, chapter 0, pages 279-297, Springer.
    20. Han, Qi & Arentze, Theo & Timmermans, Harry & Janssens, Davy & Wets, Geert, 2011. "The effects of social networks on choice set dynamics: Results of numerical simulations using an agent-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 310-322, May.
    21. Campbell, James F., 1992. "Selecting routes to minimize urban travel time," Transportation Research Part B: Methodological, Elsevier, vol. 26(4), pages 261-274, August.
    22. Bell, Michael G.H., 2009. "Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 97-107, January.
    23. Du, Lili & Han, Lanshan & Chen, Shuwei, 2015. "Coordinated online in-vehicle routing balancing user optimality and system optimality through information perturbation," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 121-133.
    24. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    25. Yang, Baiyu & Miller-Hooks, Elise, 2004. "Adaptive routing considering delays due to signal operations," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 385-413, June.
    26. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    27. Jenelius, Erik & Koutsopoulos, Haris N., 2015. "Probe vehicle data sampled by time or space: Consistent travel time allocation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 120-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lin & Kwan, Mei-Po & Pan, Xiaofang & Wan, Bo & Zhou, Shunping, 2017. "Scalable space-time trajectory cube for path-finding: A study using big taxi trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 1-27.
    2. Xie, Jun & (Marco) Nie, Yu & Liu, Xiaobo, 2017. "Testing the proportionality condition with taxi trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 583-601.
    3. Ivana Semanjski & Sidharta Gautama, 2019. "A Collaborative Stakeholder Decision-Making Approach for Sustainable Urban Logistics," Sustainability, MDPI, vol. 11(1), pages 1-11, January.
    4. Hu, Xiao-Bing & Zhang, Ming-Kong & Zhang, Qi & Liao, Jian-Qin, 2017. "Co-Evolutionary path optimization by Ripple-Spreading algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 411-432.
    5. Wang, Zhihong & Li, Yangyang & Gu, Fu & Guo, Jianfeng & Wu, Xiaojun, 2020. "Two-sided matching and strategic selection on freight resource sharing platforms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Huajun, 2019. "Dynamic Traffic Routing and Adaptive Signal Control in a Connected Vehicles Environment," Institute of Transportation Studies, Working Paper Series qt9ng3z8vn, Institute of Transportation Studies, UC Davis.
    2. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    3. Yang, Lixing & Zhang, Yan & Li, Shukai & Gao, Yuan, 2016. "A two-stage stochastic optimization model for the transfer activity choice in metro networks," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 271-297.
    4. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    5. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    6. Pi, Xidong & Qian, Zhen (Sean), 2017. "A stochastic optimal control approach for real-time traffic routing considering demand uncertainties and travelers’ choice heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 710-732.
    7. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    8. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    9. Baiocchi, Andrea, 2016. "Analysis of timer-based message dissemination protocols for inter-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 105-134.
    10. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    11. André de Palma & Nathalie Picard & Ignacio Inoa, 2014. "Discrete choice decision-making with multiple decision-makers within the household," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 363-382, Edward Elgar Publishing.
    12. Martínez-Díaz, Margarita & Pérez, Ignacio, 2015. "A simple algorithm for the estimation of road traffic space mean speeds from data available to most management centres," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 19-35.
    13. André de Palma & Nathalie Picard & Robin Lindsey, 2024. "Activity and transportation decisions within households," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 426-451, Edward Elgar Publishing.
    14. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    15. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    16. Jean-Charles Créput & Amir Hajjam & Abderrafiaa Koukam & Olivier Kuhn, 2012. "Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem," Journal of Combinatorial Optimization, Springer, vol. 24(4), pages 437-458, November.
    17. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    18. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    19. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    20. Maat, Kees & Timmermans, Harry J.P., 2009. "Influence of the residential and work environment on car use in dual-earner households," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 654-664, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:93:y:2016:i:pa:p:450-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.