IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v54y2013icp1-16.html
   My bibliography  Save this article

Location planning for transit-based evacuation under the risk of service disruptions

Author

Listed:
  • An, Shi
  • Cui, Na
  • Li, Xiaopeng
  • Ouyang, Yanfeng

Abstract

The effectiveness of transit-based emergency evacuation highly depends on the location of pick-up facilities, resource allocation, and management. These facilities themselves are often subject to service disruptions during or after the emergency. This paper proposes a reliable emergency facility location model that determines both pre-emergency facility location planning and the evacuation operations afterwards, while facilities are subject to the risk of disruptions. We analyze how evacuation resource availability leverages individual evacuees’ response to service disruptions, and show how equilibrium of the evacuee arrival process could be reached at a functioning pick-up facility. Based on this equilibrium, an optimal resource allocation strategy is found to balance the tradeoff between the evacuees’ risks and the evacuation agency’s operation costs. This leads to the development of a compact polynomial-size linear integer programming formulation that minimizes the total expected system cost from both pre-emergency planning (e.g., facility set-up) and the evacuation operations (e.g., fleet management, transportation, and exposure to hazardous surroundings) across an exponential number of possible disruption scenarios. We also show how the model can be flexibly used to plan not only pre-disaster evacuation but also post-disaster rescue actions. Numerical experiments and an empirical case study for three coastal cities in the State of Mississippi (Biloxi, Gulfport, and D’lberville) are conducted to study the performance of the proposed models and to draw managerial insights.

Suggested Citation

  • An, Shi & Cui, Na & Li, Xiaopeng & Ouyang, Yanfeng, 2013. "Location planning for transit-based evacuation under the risk of service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 1-16.
  • Handle: RePEc:eee:transb:v:54:y:2013:i:c:p:1-16
    DOI: 10.1016/j.trb.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513000428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friesz, Terry L., 2011. "Supply chain disruption and risk management," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1125-1127, September.
    2. Leclerc, France & Schmitt, Bernd H & Dube, Laurette, 1995. "Waiting Time and Decision Making: Is Time like Money?," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 22(1), pages 110-119, June.
    3. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    4. Snyder, Lawrence V. & Daskin, Mark S. & Teo, Chung-Piaw, 2007. "The stochastic location model with risk pooling," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1221-1238, June.
    5. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    6. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    7. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    8. Friesz, Terry L. & Lee, Ilsoo & Lin, Cheng-Chang, 2011. "Competition and disruption in a dynamic urban supply chain," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1212-1231, September.
    9. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    10. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    11. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    12. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    13. Horner, Mark W. & Groves, Sara, 2007. "Network flow-based strategies for identifying rail park-and-ride facility locations," Socio-Economic Planning Sciences, Elsevier, vol. 41(3), pages 255-268, September.
    14. Michael Lindell & Carla Prater, 2007. "A hurricane evacuation management decision support system (EMDSS)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(3), pages 627-634, March.
    15. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    16. Elder, K. & Xirasagar, S. & Miller, N. & Bowen, S.A. & Glover, S. & Piper, C., 2007. "African Americans' decisions not to evacuate New Orleans before Hurricane Katrina: A qualitative study (American Journal of Public Health (2007) 97 (S124-S129) doi:10.2105/AJPH.2006.100867)," American Journal of Public Health, American Public Health Association, vol. 97(12), pages 2122-2122.
    17. Mozart Menezes & O. Berman & D. Krass, 2007. "Facility Reliability Issues in Network p-Median Problems: Strategic Centralization and Co-location Effects," Post-Print halshs-00170396, HAL.
    18. Lian Qi & Zuo-Jun Max Shen & Lawrence V. Snyder, 2010. "The Effect of Supply Disruptions on Supply Chain Design Decisions," Transportation Science, INFORMS, vol. 44(2), pages 274-289, May.
    19. Elder, K. & Xirasagar, S. & Miller, N. & Bowen, S.A. & Glover, S. & Piper, C., 2007. "African Americans' decisions not to evacuate New Orleans before Hurricane Katrina: a qualitative study," American Journal of Public Health, American Public Health Association, vol. 97(S1), pages 124-129.
    20. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    21. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    2. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    3. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    4. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.
    5. Cui, Jianxun & Zhao, Meng & Li, Xiaopeng & Parsafard, Mohsen & An, Shi, 2016. "Reliable design of an integrated supply chain with expedited shipments under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 143-163.
    6. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    7. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    8. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    9. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    10. Fan, Hongqiang & Yun, Lifen & Li, Xiaopeng, 2022. "A linear-time crystal-growth algorithm for discretization of continuum approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Yu, Guodong & Zhang, Jie, 2018. "Multi-dual decomposition solution for risk-averse facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 70-89.
    12. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    13. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    14. Yun, Lifen & Wang, Xifu & Fan, Hongqiang & Li, Xiaopeng, 2020. "Reliable facility location design with round-trip transportation under imperfect information Part I: A discrete model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    15. Li, Xiaopeng, 2013. "An integrated modeling framework for design of logistics networks with expedited shipment services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 46-63.
    16. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
    17. Wang, Xin & Ouyang, Yanfeng, 2013. "A continuum approximation approach to competitive facility location design under facility disruption risks," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 90-103.
    18. Yu, Guodong & Haskell, William B. & Liu, Yang, 2017. "Resilient facility location against the risk of disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 82-105.
    19. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    20. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:54:y:2013:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.