IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i9p896-915.html
   My bibliography  Save this article

Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach

Author

Listed:
  • Wu, Xing
  • (Marco) Nie, Yu

Abstract

This paper proposes a unified approach to modeling heterogonous risk-taking behavior in route choice based on the theory of stochastic dominance (SD). Specifically, the first-, second-, and third-order stochastic dominance (FSD, SSD, TSD) are respectively linked to insatiability, risk-aversion and ruin-aversion within the framework of utility maximization. The paths that may be selected by travelers of different risk-taking preferences can be obtained from the corresponding SD-admissible paths, which can be generated using general dynamic programming. This paper also analyzes the relationship between the SD-based approach and other route choice models that consider risk-taking behavior. These route choice models employ a variety of reliability indexes, which often make the problem of finding optimal paths intractable. We show that the optimal paths with respect to these reliability indexes often belong to one of the three SD-admissible path sets. This finding offers not only an interpretation of risk-taking behavior consistent with the SD theory for these route choice models, but also a unified and computationally viable solution approach through SD-admissible path sets, which are usually small and can be generated without having to enumerate all paths. A generic label-correcting algorithm is proposed to generate FSD-, SSD-, and TSD-admissible paths, and numerical experiments are conducted to test the algorithm and to verify the analytical results.

Suggested Citation

  • Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:9:p:896-915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585641100067X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Terence C. & Small, Kenneth A., 0. "The value of time and reliability: measurement from a value pricing experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 231-251, April.
    2. Y. Y. Fan & R. E. Kalaba & J. E. Moore, 2005. "Arriving on Time," Journal of Optimization Theory and Applications, Springer, vol. 127(3), pages 497-513, December.
    3. Hadar, Josef & Russell, William R., 1971. "Stochastic dominance and diversification," Journal of Economic Theory, Elsevier, vol. 3(3), pages 288-305, September.
    4. Fu, Liping & Rilett, L. R., 1998. "Expected shortest paths in dynamic and stochastic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 499-516, September.
    5. Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(4), pages 537-542.
    6. Fu, Liping, 2001. "An adaptive routing algorithm for in-vehicle route guidance systems with real-time information," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 749-765, September.
    7. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    8. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    9. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. H. Frank, 1969. "Shortest Paths in Probabilistic Graphs," Operations Research, INFORMS, vol. 17(4), pages 583-599, August.
    12. Christian Ullrich, 2009. "Forecasting and Hedging in the Foreign Exchange Markets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-00495-7, October.
    13. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    14. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    15. Whitmore, G A, 1970. "Third-Degree Stochastic Dominance," American Economic Review, American Economic Association, vol. 60(3), pages 457-459, June.
    16. Hall, Randolph W., 1983. "Travel outcome and performance: The effect of uncertainty on accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 275-290, August.
    17. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    18. Anthony Chen & Zhong Zhou, 2009. "A Stochastic α-reliable Mean-excess Traffic Equilibrium Model with Probabilistic Travel Times and Perception Errors," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 117-145, Springer.
    19. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    20. Liu, Henry X. & Recker, Will & Chen, Anthony, 2004. "Uncovering the contribution of travel time reliability to dynamic route choice using real-time loop data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 435-453, July.
    21. Raj A. Sivakumar & Rajan Batta, 1994. "The Variance-Constrained Shortest Path Problem," Transportation Science, INFORMS, vol. 28(4), pages 309-316, November.
    22. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    23. Pitu Mirchandani & Hossein Soroush, 1987. "Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions," Transportation Science, INFORMS, vol. 21(3), pages 133-152, August.
    24. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    25. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    26. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    27. Bell, Michael G. H. & Cassir, Chris, 2002. "Risk-averse user equilibrium traffic assignment: an application of game theory," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 671-681, September.
    28. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    29. Milton Friedman & L. J. Savage, 1948. "The Utility Analysis of Choices Involving Risk," Journal of Political Economy, University of Chicago Press, vol. 56(4), pages 279-279.
    30. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    31. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    2. Yu Nie & Xing Wu & Tito Homem-de-Mello, 2012. "Optimal Path Problems with Second-Order Stochastic Dominance Constraints," Networks and Spatial Economics, Springer, vol. 12(4), pages 561-587, December.
    3. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
    4. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
    5. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    6. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    7. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    8. Nie, Yu (Marco), 2011. "Multi-class percentile user equilibrium with flow-dependent stochasticity," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1641-1659.
    9. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    10. Leilei Zhang & Tito Homem-de-Mello, 2017. "An Optimal Path Model for the Risk-Averse Traveler," Transportation Science, INFORMS, vol. 51(2), pages 518-535, May.
    11. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    12. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    13. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    14. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    15. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    16. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    17. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.
    18. A. Arun Prakash & Karthik K. Srinivasan, 2018. "Pruning Algorithms to Determine Reliable Paths on Networks with Random and Correlated Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 80-101, January.
    19. David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.
    20. Xiangdong Xu & Anthony Chen & Lin Cheng, 2013. "Assessing the effects of stochastic perception error under travel time variability," Transportation, Springer, vol. 40(3), pages 525-548, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:9:p:896-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.