IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v13y2004i10p1003-1014.html
   My bibliography  Save this article

Estimating the demand for health care with panel data: a semiparametric Bayesian approach

Author

Listed:
  • Markus Jochmann
  • Roberto León‐González

Abstract

This paper is concerned with the problem of estimating the demand for health care with panel data. A random effects model is specified within a semiparametric Bayesian approach using a Dirichlet process prior. This results in a very flexible distribution for both the random effects and the count variable. In particular, the model can be seen as a mixture distribution with a random number of components, and is therefore a natural extension of prevailing latent class models. A full Bayesian analysis using Markov chain Monte Carlo simulation methods is proposed. The methodology is illustrated with an application using data from Germany. Copyright © 2004 John Wiley & Sons, Ltd.

Suggested Citation

  • Markus Jochmann & Roberto León‐González, 2004. "Estimating the demand for health care with panel data: a semiparametric Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1003-1014, October.
  • Handle: RePEc:wly:hlthec:v:13:y:2004:i:10:p:1003-1014
    DOI: 10.1002/hec.936
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.936
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.
    2. Deb, Partha & Trivedi, Pravin K, 1997. "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 313-336, May-June.
    3. Elke Holst & Dean R. Lillard & Thomas A. DiPrete, 2001. "Proceedings of the 2000 Fourth International Conference of German Socio-Economic Panel Study Users (GSOEP 2000): Editorial Introduction," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 70(1), pages 5-6.
    4. SOEP Group, 2001. "The German Socio-Economic Panel (GSOEP) after More than 15 Years: Overview," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 70(1), pages 7-14.
    5. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    6. Andreas Million & Regina T. Riphahn & Achim Wambach, 2003. "Incentive effects in the demand for health care: a bivariate panel count data estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 387-405.
    7. Gurmu, Shiferaw, 1997. "Semi-Parametric Estimation of Hurdle Regression Models with an Application to Medicaid Utilization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 225-243, May-June.
    8. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    9. Angel López‐Nicolás, 1998. "Unobserved heterogeneity and censoring in the demand for health care," Health Economics, John Wiley & Sons, Ltd., vol. 7(5), pages 429-437, August.
    10. Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
    11. Sergi Jiménez‐Martín & José M. Labeaga & Maite Martínez‐Granado, 2002. "Latent class versus two‐part models in the demand for physician services across the European Union," Health Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 301-321, June.
    12. Winfried Pohlmeier & Volker Ulrich, 1995. "An Econometric Model of the Two-Part Decisionmaking Process in the Demand for Health Care," Journal of Human Resources, University of Wisconsin Press, vol. 30(2), pages 339-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
    2. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    3. Md Mahfuzur Rahman & Rubayet Karim & Md. Moniruzzaman & Md. Afjal Hossain & Hammad Younes, 2023. "Modeling Hospital Operating Theater Services: A System Dynamics Approach," Logistics, MDPI, vol. 7(4), pages 1-21, November.
    4. Markus Jochmann, 2013. "What belongs where? Variable selection for zero-inflated count models with an application to the demand for health care," Computational Statistics, Springer, vol. 28(5), pages 1947-1964, October.
    5. Minke Remmerswaal & Jan Boone, 2020. "A Structural Microsimulation Model for Demand-Side Cost-Sharing in Healthcare," CPB Discussion Paper 415.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Minke Remmerswaal & Jan Boone, 2020. "A Structural Microsimulation Model for Demand-Side Cost-Sharing in Healthcare," CPB Discussion Paper 415, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Zamiela, Christian & Hossain, Niamat Ullah Ibne & Jaradat, Raed, 2022. "Enablers of resilience in the healthcare supply chain: A case study of U.S healthcare industry during COVID-19 pandemic," Research in Transportation Economics, Elsevier, vol. 93(C).
    8. Arnab Mukherji & Satrajit Roychowdhury & Pulak Ghosh & Sarah Brown, 2012. "Estimating Healthcare Demand for an Aging Population: A Flexible and Robust Bayesian Joint Model," Working Papers 2012027, The University of Sheffield, Department of Economics.
    9. Ketelhöhn, Niels & Sanz, Luis, 2016. "Healthcare management priorities in Latin America: Framework and responses," Journal of Business Research, Elsevier, vol. 69(9), pages 3835-3838.
    10. Thomas Brenner & Claudia Werker, 2007. "A Taxonomy of Inference in Simulation Models," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 227-244, October.
    11. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2012. "A Poisson mixture model of discrete choice," Journal of Econometrics, Elsevier, vol. 166(2), pages 184-203.
    12. Jing Dai & Stefan Sperlich & Walter Zucchini, 2011. "Estimating and predicting the distribution of the number of visits to the medical doctor," MAGKS Papers on Economics 201148, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    13. Zheng, Xiaoyong, 2008. "Semiparametric Bayesian estimation of mixed count regression models," Economics Letters, Elsevier, vol. 100(3), pages 435-438, September.
    14. Kevin Dayaratna & Jesse Crosson & Chandler Hubbard, 2022. "Closed Form Bayesian Inferences for Binary Logistic Regression with Applications to American Voter Turnout," Stats, MDPI, vol. 5(4), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Sander, 2008. "Is There Migration-Related Inequity in Access to or in the Utilisation of Health Care in Germany?," SOEPpapers on Multidisciplinary Panel Data Research 147, DIW Berlin, The German Socio-Economic Panel (SOEP).
    2. Teresa Bago d'Uva, 2006. "Latent class models for utilisation of health care," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 329-343, April.
    3. Erik Schokkaert & Tom Van Ourti & Diana De Graeve & Ann Lecluyse & Carine Van de Voorde, 2010. "Supplemental health insurance and equality of access in Belgium," Health Economics, John Wiley & Sons, Ltd., vol. 19(4), pages 377-395, April.
    4. Bago d'Uva, Teresa & Jones, Andrew M., 2009. "Health care utilisation in Europe: New evidence from the ECHP," Journal of Health Economics, Elsevier, vol. 28(2), pages 265-279, March.
    5. Teresa Bago d'Uva, 2005. "Latent class models for use of primary care: evidence from a British panel," Health Economics, John Wiley & Sons, Ltd., vol. 14(9), pages 873-892, September.
    6. Bago d'Uva, Teresa & Jones, Andrew M. & van Doorslaer, Eddy, 2009. "Measurement of horizontal inequity in health care utilisation using European panel data," Journal of Health Economics, Elsevier, vol. 28(2), pages 280-289, March.
    7. Hendrik Schmitz, 2012. "More health care utilization with more insurance coverage? Evidence from a latent class model with German data," Applied Economics, Taylor & Francis Journals, vol. 44(34), pages 4455-4468, December.
    8. Antonio Clavero Barranquero & Mª. Luz González Alvarez, 2005. "A survey of econometric models to analyze the demand and utilisation of health care," Hacienda Pública Española / Review of Public Economics, IEF, vol. 173(2), pages 129-162, June.
    9. Sergi Jiménez-Martín & José Labeaga & Maite Martínez-Granado, 2004. "An empirical analysis of the demand for physician services across the European Union," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 5(2), pages 150-165, May.
    10. McLeod, Logan, 2011. "A nonparametric vs. latent class model of general practitioner utilization: Evidence from Canada," Journal of Health Economics, Elsevier, vol. 30(6), pages 1261-1279.
    11. Richard Layte & Anne Nolan, 2015. "Eligibility for free GP care and the utilisation of GP services by children in Ireland," International Journal of Health Economics and Management, Springer, vol. 15(1), pages 3-27, March.
    12. Harris, Matthew & Kohn, Jennifer, 2015. "Reference dependent utility from health and the demand for medical care," MPRA Paper 61926, University Library of Munich, Germany.
    13. Majo, M.C., 2010. "A microeconometric analysis of health care utilization in Europe," Other publications TiSEM 1cf5fd2f-8146-4ef8-8eb5-e, Tilburg University, School of Economics and Management.
    14. Sisira Sarma & Wayne Simpson, 2006. "A microeconometric analysis of Canadian health care utilization," Health Economics, John Wiley & Sons, Ltd., vol. 15(3), pages 219-239, March.
    15. Joan Gil & Paolo Li Donni & Eugenio Zucchelli, 2019. "Uncontrolled diabetes and health care utilisation: A bivariate latent Markov model approach," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1262-1276, November.
    16. Mauro Laudicella & Paolo Li Donni, 2022. "The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 521-536, April.
    17. Sergi Jiménez‐Martín & José M. Labeaga & Maite Martínez‐Granado, 2002. "Latent class versus two‐part models in the demand for physician services across the European Union," Health Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 301-321, June.
    18. Majo, M.C. & van Soest, A.H.O., 2011. "The Fixed-Effects Zero-Inflated Poisson Model with an Application to Health Care Utilization," Other publications TiSEM 68cf0f9b-fc68-4017-97a9-a, Tilburg University, School of Economics and Management.
    19. Fabbri, Daniele & Monfardini, Chiara, 2009. "Rationing the public provision of healthcare in the presence of private supplements: Evidence from the Italian NHS," Journal of Health Economics, Elsevier, vol. 28(2), pages 290-304, March.
    20. Galina Besstremyannaya, 2014. "Heterogeneous effect of coinsurance rate on healthcare costs: generalized finite mixtures and matching estimators," Discussion Papers 14-014, Stanford Institute for Economic Policy Research.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • I10 - Health, Education, and Welfare - - Health - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:13:y:2004:i:10:p:1003-1014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.