IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2238-d750610.html
   My bibliography  Save this article

Impacts of Real-Time Traffic State on Urban Expressway Crashes by Collision and Vehicle Type

Author

Listed:
  • Chen Wang

    (Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China)

  • Ming Zhong

    (Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China)

  • Hui Zhang

    (Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China)

  • Siyao Li

    (Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China)

Abstract

With the rapid development of urban expressway systems in China in recent years, traffic safety problems have attracted more attention. Variation of traffic flow is considered to have significant impact on the safety performance of expressways. Therefore, the motivation of this study is to explore the mechanism of how the variation of traffic flow measurements such as average speed, speed variation and traffic volume impact the crash risk. Firstly, the crashes were classified according to crash type and vehicles involved: and they are labeled with rear-end collisions or side-impact collisions, they are labeled with heavy-vehicle related collisions or light-vehicle related collisions as well. Then, the corresponding crash data were aggregated based on the similarity of traffic flow conditions and types of crashes. Finally, a random effect negative binomial model was introduced to consider the heterogeneity of the crash risk due to the variance within the traffic flow and crash types. The results show that the significant influencing factors of each type of crashes are not consistent. Specifically, the percentage of heavy vehicles within traffic flow is found to have a negative impact on rear-end collisions and light-vehicle-related collisions, but it has no obvious correlation with side-impact collisions and heavy-vehicle-related collisions. Average speed, speed variation and traffic volume have an interactive effect on the crash rate. In conclusion, if the traffic flow is with higher speed variation within lanes and is with lower average speed, the risk of all types of crashes tends to be higher. If the speed variation within lanes decreases and the average speed increases, the crash risk will also increase. In addition, if the traffic flow is under the conditions of higher speed variation between lanes and lower traffic volume, the risk of rear-end collisions, side-impact collisions and heavy-vehicles related collisions tend to be higher. Meanwhile, if the speed variation between lanes decreases and the traffic volume increases, the crash risk is found to increase as well.

Suggested Citation

  • Chen Wang & Ming Zhong & Hui Zhang & Siyao Li, 2022. "Impacts of Real-Time Traffic State on Urban Expressway Crashes by Collision and Vehicle Type," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2238-:d:750610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria-Ioanna M. Imprialou & Mohammed Quddus & David E. Pitfield, 2016. "Predicting the safety impact of a speed limit increase using condition-based multivariate Poisson lognormal regression," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(1), pages 3-23, February.
    2. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    3. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    4. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    5. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    6. Ping Zhang & Chenzhu Wang & Fei Chen & Suping Cui & Jianchuan Cheng & Wu Bo, 2022. "A Random-Parameter Negative Binomial Model for Assessing Freeway Crash Frequency by Injury Severity: Daytime versus Nighttime," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    7. Zhenggan Cai & Fulu Wei & Zhenyu Wang & Yongqing Guo & Long Chen & Xin Li, 2021. "Modeling of Low Visibility-Related Rural Single-Vehicle Crashes Considering Unobserved Heterogeneity and Spatial Correlation," Sustainability, MDPI, vol. 13(13), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2238-:d:750610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.