IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9061-d870290.html
   My bibliography  Save this article

A Random-Parameter Negative Binomial Model for Assessing Freeway Crash Frequency by Injury Severity: Daytime versus Nighttime

Author

Listed:
  • Ping Zhang

    (School of Engineering, Tibet University, No. 36 Jiangsu, Lhasa 850000, China)

  • Chenzhu Wang

    (School of Transportation, Southeast University, 2 Sipailou, Nanjing 210096, China)

  • Fei Chen

    (School of Transportation, Southeast University, 2 Sipailou, Nanjing 210096, China)

  • Suping Cui

    (School of Engineering, Tibet University, No. 36 Jiangsu, Lhasa 850000, China)

  • Jianchuan Cheng

    (School of Transportation, Southeast University, 2 Sipailou, Nanjing 210096, China)

  • Wu Bo

    (School of Engineering, Tibet University, No. 36 Jiangsu, Lhasa 850000, China)

Abstract

This study explored the effects of contributing factors on crash frequency, by injury severity of all, daytime, and nighttime crashes that occurred on freeways. With three injury severity outcomes classified as light injury, minor injury, and severe injury, the effects of the explanatory variables affecting the crash frequency were examined in terms of the crash, traffic, speed, geometric, and sight characteristics. Regarding the model estimations, the lowest AIC and BIC values (2263.87 and 2379.22, respectively) showed the superiority of the random-parameter multivariate negative binomial (RPMNB) model in terms of the goodness-of-fit measure. Additionally, the RPMNB model indicated the highest R 2 (0.25) and predictive accuracy, along with a significantly positive α parameter. Moreover, transferability tests were conducted to confirm the rationality of separating the daytime and nighttime crashes. Based on the RPMNB models, several explanatory variables were observed to exhibit relatively stable effects whereas other variables presented obvious variations. This study can be of certain value in guiding highway design and policies and developing effective safety countermeasures.

Suggested Citation

  • Ping Zhang & Chenzhu Wang & Fei Chen & Suping Cui & Jianchuan Cheng & Wu Bo, 2022. "A Random-Parameter Negative Binomial Model for Assessing Freeway Crash Frequency by Injury Severity: Daytime versus Nighttime," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9061-:d:870290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rainer Winkelmann, 2000. "Seemingly Unrelated Negative Binomial Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 62(4), pages 553-560, September.
    2. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    3. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Chenzhu Wang & Fei Chen & Jianchuan Cheng & Wu Bo & Ping Zhang & Mingyu Hou & Feng Xiao, 2020. "Random-Parameter Multivariate Negative Binomial Regression for Modeling Impacts of Contributing Factors on the Crash Frequency by Crash Types," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-13, November.
    6. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    7. Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Sun & Hanxiao Hu & Shuo Ma & Kun Lin & Jianyu Wang & Huapu Lu, 2022. "Study on the Impact of Road Traffic Accident Duration Based on Statistical Analysis and Spatial Distribution Characteristics: An Empirical Analysis of Houston," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    3. Shinya Sugawara & Yasuhiro Omori, 2017. "An Econometric Analysis of Insurance Markets with Separate Identification for Moral Hazard and Selection Problems," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 473-502, October.
    4. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    5. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    6. Trevor C. Bailey & Paul J. Hewson, 2004. "Simultaneous modelling of multiple traffic safety performance indicators by using a multivariate generalized linear mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 501-517, August.
    7. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    8. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    9. Nobuhiko Terui & Masataka Ban, 2013. "Multivariate Time Series Model with Hierarchical Structure for Over-dispersed Discrete Outcomes," TMARG Discussion Papers 113, Graduate School of Economics and Management, Tohoku University, revised Aug 2013.
    10. Herriges, Joseph A. & Phaneuf, Daniel J. & Tobias, Justin L., 2008. "Estimating demand systems when outcomes are correlated counts," Journal of Econometrics, Elsevier, vol. 147(2), pages 282-298, December.
    11. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    12. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    13. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    14. Congdon, P., 2007. "Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2586-2601, February.
    15. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    16. Jie Yan & Sheng Zeng & Bijiang Tian & Yuanwen Cao & Wenchen Yang & Feng Zhu, 2023. "Relationship between Highway Geometric Characteristics and Accident Risk: A Multilayer Perceptron Model (MLP) Approach," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    17. Yoshihiro Ohtsuka, 2018. "Large Shocks and the Business Cycle: The Effect of Outlier Adjustments," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 143-178, April.
    18. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    19. Amaya-Gómez, Rafael & Sánchez-Silva, Mauricio & Muñoz, Felipe & Schoefs, Franck & Bastidas-Arteaga, Emilio, 2024. "Spatial characterization and simulation of new defects in corroded pipeline based on In-Line Inspections," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Song, Zefang & Song, Xinyuan & Li, Yuan, 2023. "Bayesian Analysis of ARCH-M model with a dynamic latent variable," Econometrics and Statistics, Elsevier, vol. 28(C), pages 47-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9061-:d:870290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.