IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v189y2024ics019126152400122x.html
   My bibliography  Save this article

A novel mobility consumption theory for road user charging

Author

Listed:
  • Bliemer, Michiel C.J.
  • Loder, Allister
  • Zheng, Zuduo

Abstract

Building on the analogy between electrical energy and mobility, we propose a novel mobility consumption theory based on the idea of the required reserved space headway of vehicles while driving. In this theory, mobility is “produced” by road infrastructure and is “consumed” by drivers in a similar fashion to power that is produced in power plants and consumed by electrical devices. The computation of mobility consumption only requires travel distance and travel time as input, as well as two physical parameters that are readily available, namely vehicle length and reaction time. We argue that mobility consumption is a more comprehensive measure for road use than travel distance (or travel time) alone as it captures road use over both space and time. One application area for our mobility consumption theory that we look at in this study is road user charging. We propose mobility consumption as the basis of a new charging scheme, which we refer to as mobility-based charging. Impacts of mobility-based charging and distance-based charging are compared in two case studies. When considering only departure time choice in a simple bottleneck model, we show that mobility-based charging can reduce congestion akin a congestion pricing scheme, unlike distance-based charging. Further, when considering route choice, we show that distance-based charging can increase congestion as it encourages drivers to take shortcuts through routes with low capacity, while mobility-based charging mitigates this effect. The proposed mobility-based charging scheme is further capable of considering technological innovation in vehicle automation and carbon charging.

Suggested Citation

  • Bliemer, Michiel C.J. & Loder, Allister & Zheng, Zuduo, 2024. "A novel mobility consumption theory for road user charging," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transb:v:189:y:2024:i:c:s019126152400122x
    DOI: 10.1016/j.trb.2024.102998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152400122X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prud'homme, Rémy & Bocarejo, Juan Pablo, 2005. "The London congestion charge: a tentative economic appraisal," Transport Policy, Elsevier, vol. 12(3), pages 279-287, May.
    2. Lindsey, Robin & Santos, Georgina, 2020. "Addressing transportation and environmental externalities with economics: Are policy makers listening?," Research in Transportation Economics, Elsevier, vol. 82(C).
    3. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    4. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1378-1388.
    5. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    6. Liu, Zhiyuan & Wang, Shuaian & Meng, Qiang, 2014. "Optimal joint distance and time toll for cordon-based congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 81-97.
    7. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.
    8. Hensher, David A. & Bliemer, Michiel C.J., 2014. "What type of road pricing scheme might appeal to politicians? Viewpoints on the challenge in gaining the citizen and public servant vote by staging reform," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 227-237.
    9. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 372-384, February.
    10. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    11. David Hensher & Corinne Mulley, 2014. "Complementing distance based charges with discounted registration fees in the reform of road user charges: the impact for motorists and government revenue," Transportation, Springer, vol. 41(4), pages 697-715, July.
    12. Khan, N. & Abas, N., 2011. "Comparative study of energy saving light sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 296-309, January.
    13. Otto Anker Nielsen & Majken Vildrik Sørensen, 2008. "The AKTA Road Pricing Experiment in Copenhagen," Advances in Spatial Science, in: Chris Jensen-Butler & Birgitte Sloth & Morten Marott Larsen & Bjarne Madsen & Otto Anker Nielsen (ed.), Road Pricing, the Economy and the Environment, chapter 6, pages 93-109, Springer.
    14. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2018. "Stability analysis methods and their applicability to car-following models in conventional and connected environments," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 212-237.
    15. Steinsland, Christian & Fridstrøm, Lasse & Madslien, Anne & Minken, Harald, 2018. "The climate, economic and equity effects of fuel tax, road toll and commuter tax credit," Transport Policy, Elsevier, vol. 72(C), pages 225-241.
    16. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    17. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    18. Tillema, Taede & Ben-Elia, Eran & Ettema, Dick & van Delden, Janet, 2013. "Charging versus rewarding: A comparison of road-pricing and rewarding peak avoidance in the Netherlands," Transport Policy, Elsevier, vol. 26(C), pages 4-14.
    19. Margaret O'Mahony & Dermot Geraghty & Ivor Humphreys, 2000. "Distance and time based road pricing trial in Dublin," Transportation, Springer, vol. 27(3), pages 269-283, June.
    20. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    21. Hensher, David A. & Li, Zheng, 2013. "Referendum voting in road pricing reform: A review of the evidence," Transport Policy, Elsevier, vol. 25(C), pages 186-197.
    22. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    2. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    3. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    4. Lago, Alejandro & Daganzo, Carlos F., 2007. "Spillovers, merging traffic and the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 670-683, July.
    5. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1378-1388.
    6. Toru Seo & Kentaro Wada & Daisuke Fukuda, 2023. "Fundamental diagram of urban rail transit considering train–passenger interaction," Transportation, Springer, vol. 50(4), pages 1399-1424, August.
    7. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    8. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    9. Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
    10. Jin, Wen-Long & Laval, Jorge, 2018. "Bounded acceleration traffic flow models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 1-18.
    11. Delpiano, Rafael & Laval, Jorge & Coeymans, Juan Enrique & Herrera, Juan Carlos, 2015. "The kinematic wave model with finite decelerations: A social force car-following model approximation," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 182-193.
    12. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    13. Zheng, Zuduo & Su, Dongcai, 2016. "Traffic state estimation through compressed sensing and Markov random field," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 525-554.
    14. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    15. Tang, Tie-Qiao & Zhang, Jian & Chen, Liang & Shang, Hua-Yan, 2017. "Analysis of vehicle’s safety envelope under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 127-133.
    16. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    17. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    18. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    19. Daganzo, Carlos F., 2006. "In traffic flow, cellular automata = kinematic waves," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 396-403, June.
    20. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:189:y:2024:i:c:s019126152400122x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.