IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v107y2018icp146-166.html
   My bibliography  Save this article

Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle

Author

Listed:
  • Han, Youngjun
  • Ahn, Soyoung

Abstract

This paper proposes a novel breakdown probability model based on microscopic driver behavior for a freeway merge bottleneck. Extending Newell's car following model to describe the transition from free-flow to congested regimes, two elements of breakdown, trigger and propagation, are derived in terms of vehicle headway. Combining these elements, a general breakdown probability is derived in terms of various parameters related to driver behavior and traffic conditions – other than flow – that can be treated as constants or stochastic with probability distributions. The proposed model is validated with real data. It was found that the theoretical breakdown probability distribution accords well with the empirical counterpart within reasonable ranges of parameter values. Our model suggests that the breakdown probability (i) increases with flow (both mainline and merging) as expected, and the merging spacing, (ii) decreases with the merging speed and aggressive driver characteristics, and interestingly, (iii) increases with the deviation in headway. A proactive traffic control method to achieve uniform headway is developed considering low penetration rates of connected automated vehicle technologies.

Suggested Citation

  • Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
  • Handle: RePEc:eee:transb:v:107:y:2018:i:c:p:146-166
    DOI: 10.1016/j.trb.2017.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517302990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigo C. Carlson & Ioannis Papamichail & Markos Papageorgiou & Albert Messmer, 2010. "Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering," Transportation Science, INFORMS, vol. 44(2), pages 238-253, May.
    2. Shiomi, Yasuhiro & Yoshii, Toshio & Kitamura, Ryuichi, 2011. "Platoon-based traffic flow model for estimating breakdown probability at single-lane expressway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1314-1330.
    3. Leclercq, Ludovic & Laval, Jorge A. & Chiabaut, Nicolas, 2011. "Capacity drops at merges: An endogenous model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1302-1313.
    4. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    5. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    6. Evans, Jodie L. & Elefteriadou, Lily & Gautam, Natarajan, 2001. "Probability of breakdown at freeway merges using Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 237-254, March.
    7. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    8. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 372-384, February.
    9. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    10. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    11. Kim, T. & Zhang, H.M., 2008. "A stochastic wave propagation model," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 619-634, August.
    12. Muñoz, Juan Carlos & Daganzo, Carlos F., 2002. "The bottleneck mechanism of a freeway diverge," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 483-505, July.
    13. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    14. Chen, Danjue & Ahn, Soyoung & Hegyi, Andreas, 2014. "Variable speed limit control for steady and oscillatory queues at fixed freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 340-358.
    15. Xiqun (Michael) Chen & Zhiheng Li & Li Li & Qixin Shi, 2014. "A Traffic Breakdown Model Based on Queueing Theory," Networks and Spatial Economics, Springer, vol. 14(3), pages 485-504, December.
    16. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    17. Windover, John R. & Cassidy, Michael J., 2001. "Some observed details of freeway traffic evolution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 881-894, December.
    18. Patire, Anthony D. & Cassidy, Michael J., 2011. "Lane changing patterns of bane and benefit: Observations of an uphill expressway," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 656-666, May.
    19. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    20. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    21. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Jianghui & Hong, Lijiang & Dai, Min & Xiao, Xinping & Wu, Chaozhong, 2023. "A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    2. Wu, Jiaming & Kulcsár, Balázs & Ahn, Soyoung & Qu, Xiaobo, 2020. "Emergency vehicle lane pre-clearing: From microscopic cooperation to routing decision making," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 223-239.
    3. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    4. Pengying Ouyang & Bo Yang, 2024. "Evaluation of Spatiotemporal Characteristics of Lane-Changing at the Freeway Weaving Area from Trajectory Data," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    5. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    2. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    3. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    4. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    5. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    6. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    7. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    8. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    9. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    10. Kai Yuan & Victor L. Knoop & Serge P. Hoogendoorn, 2017. "A Microscopic Investigation Into the Capacity Drop: Impacts of Longitudinal Behavior on the Queue Discharge Rate," Transportation Science, INFORMS, vol. 51(3), pages 852-862, August.
    11. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    12. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    13. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    14. Wang, Jiawen & Zou, Linzhi & Zhao, Jing & Wang, Xinwei, 2024. "Dynamic capacity drop propagation in incident-affected networks: Traffic state modeling with SIS-CTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    15. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    16. Gao, Hang & Chen, Shenyang & Zhang, Michael, 2020. "Get More Out of Variable Speed Limit (VSL) Control: An Integrated Approach to Manage Traffic Corridors with Multiple Bottlenecks," Institute of Transportation Studies, Working Paper Series qt6th037wz, Institute of Transportation Studies, UC Davis.
    17. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    18. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    19. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    20. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:107:y:2018:i:c:p:146-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.