IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v44y2010i3p307-321.html
   My bibliography  Save this article

To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions

Author

Listed:
  • Michael Schachtebeck

    (Institute for Numerical and Applied Mathematics, Georg-August University, 37075 Göttingen, Germany)

  • Anita Schöbel

    (Institute for Numerical and Applied Mathematics, Georg-August University, 37075 Göttingen, Germany)

Abstract

Delay management is an important issue in the daily operations of any railway company. The task is to update the planned timetable to a disposition timetable in such a way that the inconvenience for the passengers is as small as possible. The two main decisions that have to be made in this respect are the wait-depart decisions , to decide which connections should be maintained in case of delays, and the priority decisions , which determine the order in which trains are allowed to pass a specific piece of track. The latter are necessary to take the limited capacity of the track system into account. While the wait-depart decisions have been intensively studied in the literature, the priority decisions in the capacitated case have been neglected so far in delay management optimization models. In the current paper, we add the priority decisions to the integer programming formulation of the delay management problem and are hence able to deal with the capacitated case. The corresponding constraints are disjunctive constraints leading to cycles in the resulting event-activity network. Nevertheless, we are able to derive reduction techniques for the network that enable us to extend the formulation of the never-meet property from the uncapacitated delay management problem to the capacitated case. We then use our results to derive exact and heuristic solution procedures for solving the delay management problem. The results of the algorithms are evaluated both from a theoretical and a numerical point of view. The latter has been done within a case study using the railway network in the region of Harz, Germany.

Suggested Citation

  • Michael Schachtebeck & Anita Schöbel, 2010. "To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions," Transportation Science, INFORMS, vol. 44(3), pages 307-321, August.
  • Handle: RePEc:inm:ortrsc:v:44:y:2010:i:3:p:307-321
    DOI: 10.1287/trsc.1100.0318
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1100.0318
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1100.0318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heilporn, Géraldine & De Giovanni, Luigi & Labbé, Martine, 2008. "Optimization models for the single delay management problem in public transportation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 762-774, September.
    2. Harold H. Greenberg, 1968. "A Branch-Bound Solution to the General Scheduling Problem," Operations Research, INFORMS, vol. 16(2), pages 353-361, April.
    3. Richard L. Sauder & William M. Westerman, 1983. "Computer Aided Train Dispatching: Decision Support Through Optimization," Interfaces, INFORMS, vol. 13(6), pages 24-37, December.
    4. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    5. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    6. Andreas Ginkel & Anita Schöbel, 2007. "To Wait or Not to Wait? The Bicriteria Delay Management Problem in Public Transportation," Transportation Science, INFORMS, vol. 41(4), pages 527-538, November.
    7. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    8. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
    2. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
    3. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    4. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    5. Dollevoet, T.A.B. & Huisman, D. & Schöbel, A. & Schmidt, M.E., 2012. "Delay Management including Capacities of Stations," Econometric Institute Research Papers EI 2012-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    7. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    8. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    9. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    10. Andrea D’Ariano & Marco Pranzo, 2009. "An Advanced Real-Time Train Dispatching System for Minimizing the Propagation of Delays in a Dispatching Area Under Severe Disturbances," Networks and Spatial Economics, Springer, vol. 9(1), pages 63-84, March.
    11. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    12. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    13. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    14. Mizuyo Takamatsu & Azuma Taguchi, 2020. "Bus Timetable Design to Ensure Smooth Transfers in Areas with Low-Frequency Public Transportation Services," Transportation Science, INFORMS, vol. 54(5), pages 1238-1250, September.
    15. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    16. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    17. Twan Dollevoet & Dennis Huisman & Leo Kroon & Marie Schmidt & Anita Schöbel, 2015. "Delay Management Including Capacities of Stations," Transportation Science, INFORMS, vol. 49(2), pages 185-203, May.
    18. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    19. Yang, Lixing & Qi, Jianguo & Li, Shukai & Gao, Yuan, 2016. "Collaborative optimization for train scheduling and train stop planning on high-speed railways," Omega, Elsevier, vol. 64(C), pages 57-76.
    20. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:44:y:2010:i:3:p:307-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.