IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v35y2001i7p643-666.html
   My bibliography  Save this article

Choice set generation within the generalized extreme value family of discrete choice models

Author

Listed:
  • Swait, Joffre

Abstract

This paper introduces a new member of the generalized extreme value (GEV) family of discrete choice models that directly incorporates choice set generation modeling into the specification via the GEV generating function. Though still a two-stage model of choice set generation and choice, the proposed model specifies choice set generation endogenously and directly reflective of preferences, which further differentiates it from extant models of choice set formation. The properties of the model, denominated GenL (choice set Generation Logit), are examined in detail. A case study involving intercity mode choice by non-business travelers is presented to illustrate model estimation and interpretation, as well as to obtain insights into possible data generation process characteristics that lead to violation of GEV conditions for the model.

Suggested Citation

  • Swait, Joffre, 2001. "Choice set generation within the generalized extreme value family of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 643-666, August.
  • Handle: RePEc:eee:transb:v:35:y:2001:i:7:p:643-666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00029-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Empirical test of a constrained choice discrete model: Mode choice in São Paulo, Brazil," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 103-115, April.
    2. Herriges, Joseph A. & Kling, Catherine L., 1996. "Testing the consistency of nested logit models with utility maximization," Economics Letters, Elsevier, vol. 50(1), pages 33-39, January.
    3. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    4. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    5. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    6. Klein, Noreen M & Bither, Stewart W, 1987. "An Investigation of Utility-Directed Cutoff Selection," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(2), pages 240-256, September.
    7. Borsch-Supan, Axel, 1990. "On the compatibility of nested logit models with utility maximization," Journal of Econometrics, Elsevier, vol. 43(3), pages 373-388, March.
    8. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Incorporating random constraints in discrete models of choice set generation," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 91-102, April.
    9. Gaundry, Marc J. I. & Dagenais, Marcel G., 1979. "The dogit model," Transportation Research Part B: Methodological, Elsevier, vol. 13(2), pages 105-111, June.
    10. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    11. Small, Kenneth A., 1994. "Approximate generalized extreme value models of discrete choice," Journal of Econometrics, Elsevier, vol. 62(2), pages 351-382, June.
    12. H C W L Williams, 1977. "On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit," Environment and Planning A, , vol. 9(3), pages 285-344, March.
    13. Moshe Ben-Akiva & Joffre Swait, 1986. "The Akaike Likelihood Ratio Index," Transportation Science, INFORMS, vol. 20(2), pages 133-136, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swait, Joffre, 2009. "Choice models based on mixed discrete/continuous PDFs," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 766-783, August.
    2. Cascetta, Ennio & Papola, Andrea, 2009. "Dominance among alternatives in random utility models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 170-179, February.
    3. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    4. Truong, Thuy D. & Adamowicz, Wiktor L. (Vic) & Boxall, Peter C., 2015. "Modeling non-compensatory preferences in environmental valuation," Resource and Energy Economics, Elsevier, vol. 39(C), pages 89-107.
    5. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    6. Joffre Swait & Fred Feinberg, 2014. "Deciding how to decide: an agenda for multi-stage choice modelling research in marketing," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 26, pages 649-660, Edward Elgar Publishing.
    7. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    8. Swait, Joffre & Adamowicz, Wiktor, 2001. "Choice Environment, Market Complexity, and Consumer Behavior: A Theoretical and Empirical Approach for Incorporating Decision Complexity into Models of Consumer Choice," Organizational Behavior and Human Decision Processes, Elsevier, vol. 86(2), pages 141-167, November.
    9. Swait, Joffre & Bernardino, Adriana, 2000. "Distinguishing taste variation from error structure in discrete choice data," Transportation Research Part B: Methodological, Elsevier, vol. 34(1), pages 1-15, January.
    10. Hicks, Robert L. & Holland, Daniel S. & Kuriyama, Peter T. & Schnier, Kurt E., 2020. "Choice sets for spatial discrete choice models in data rich environments," Resource and Energy Economics, Elsevier, vol. 60(C).
    11. Martin, Elliott William, 2009. "New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax," University of California Transportation Center, Working Papers qt5gd206wv, University of California Transportation Center.
    12. Martin, Elliot William, 2009. "New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax," University of California Transportation Center, Working Papers qt6sz198c2, University of California Transportation Center.
    13. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    14. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    15. Swait, Joffre & Adamowicz, Wiktor & Bueren, Martin van, 2004. "Choice and temporal welfare impacts: incorporating history into discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 94-116, January.
    16. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
    17. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.
    18. Fry, Tim R. L. & Harris, Mark N., 1996. "A Monte Carlo study of tests for the independence of irrelevant alternatives property," Transportation Research Part B: Methodological, Elsevier, vol. 30(1), pages 19-30, February.
    19. Brownstone, David, 2001. "Discrete Choice Modeling for Transportation," University of California Transportation Center, Working Papers qt29v7d1pk, University of California Transportation Center.
    20. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:35:y:2001:i:7:p:643-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.