IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v60y2020ics0928765518304408.html
   My bibliography  Save this article

Choice sets for spatial discrete choice models in data rich environments

Author

Listed:
  • Hicks, Robert L.
  • Holland, Daniel S.
  • Kuriyama, Peter T.
  • Schnier, Kurt E.

Abstract

Failure to properly specify an agent's choice set in discrete choice models will generate biased parameter estimates resulting in inaccurate behavioral predictions as well as biased estimates of policy relevant metrics. We propose a method of constructing choice sets by sampling from specific points in space to model agent behavior when choice alternatives are unknown to the researcher, potentially infinite, and differ according to spatial and temporal factors. Using Monte Carlo analysis we compare the performance of this point-based sampling method to the commonly used approach of spatially aggregating choice alternatives. We then apply these alternative approaches to modelling location choice in the Pacific groundfish trawl fishery which has a complex spatial choice structure. Both the Monte Carlo and application results provide considerable support for the efficacy of the point-based approaches.

Suggested Citation

  • Hicks, Robert L. & Holland, Daniel S. & Kuriyama, Peter T. & Schnier, Kurt E., 2020. "Choice sets for spatial discrete choice models in data rich environments," Resource and Energy Economics, Elsevier, vol. 60(C).
  • Handle: RePEc:eee:resene:v:60:y:2020:i:c:s0928765518304408
    DOI: 10.1016/j.reseneeco.2019.101148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765518304408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2019.101148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Spencer Banzhaf & V. Kerry Smith, 2007. "Meta-analysis in model implementation: choice sets and the valuation of air quality improvements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1013-1031.
    2. Robert L. Hicks & Ivar E. Strand, 2000. "The Extent of Information: Its Relevance for Random Utility Models," Land Economics, University of Wisconsin Press, vol. 76(3), pages 374-385.
    3. David Scrogin & Richard Hofler & Kevin Boyle & J. Walter Milon, 2010. "An efficiency approach to choice set formation: theory and application to recreational destination choice," Applied Economics, Taylor & Francis Journals, vol. 42(3), pages 333-350.
    4. Basar, Gözen & Bhat, Chandra, 2004. "A parameterized consideration set model for airport choice: an application to the San Francisco Bay Area," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 889-904, December.
    5. Wayne S. Desarbo & Kamel Jedidi, 1995. "The Spatial Representation of Heterogeneous Consideration Sets," Marketing Science, INFORMS, vol. 14(3), pages 326-342.
    6. Haab, Timothy C. & Hicks, Robert L., 1997. "Accounting for Choice Set Endogeneity in Random Utility Models of Recreation Demand," Journal of Environmental Economics and Management, Elsevier, vol. 34(2), pages 127-147, October.
    7. von Haefen, Roger H. & Domanski, Adam, 2018. "Estimation and welfare analysis from mixed logit models with large choice sets," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 101-118.
    8. Hanemann, W. Michael, 1982. "Applied Welfare Analysis with Qualitative Response Models," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7982f0k8, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Hicks, Robert L. & Schnier, Kurt E., 2010. "Spatial regulations and endogenous consideration sets in fisheries," Resource and Energy Economics, Elsevier, vol. 32(2), pages 117-134, April.
    10. Dupont, D.P., 1993. "Price Uncertainty,Expectations Formation and Fishers' Allocation Choice," Working Papers 1993-1, Brock University, Department of Economics.
    11. Hanemann, W. Michael, 1982. "Applied Welfare Analysis with Qualitative Response Models," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7982f0k8, Department of Agricultural & Resource Economics, UC Berkeley.
    12. George R. Parsons & Michael S. Needelman, 1992. "Site Aggregation in a Random Utility Model of Recreation," Land Economics, University of Wisconsin Press, vol. 68(4), pages 418-433.
    13. George R. Parsons & GAndrew J. Plantinga & GKevin J. Boyle, 2000. "Narrow Choice Sets in a Random Utility Model of Recreation Demand," Land Economics, University of Wisconsin Press, vol. 76(1), pages 86-99.
    14. Swait, Joffre, 2001. "Choice set generation within the generalized extreme value family of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 643-666, August.
    15. Seo Yoon & Kathleen Deutsch & Yali Chen & Konstadinos Goulias, 2012. "Feasibility of using time–space prism to represent available opportunities and choice sets for destination choice models in the context of dynamic urban environments," Transportation, Springer, vol. 39(4), pages 807-823, July.
    16. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    17. Daniel S. Holland, 2016. "Development of the Pacific Groundfish Trawl IFQ Market," Marine Resource Economics, University of Chicago Press, vol. 31(4), pages 453-464.
    18. Peter M. Feather, 1994. "Sampling and Aggregation Issues in Random Utility Model Estimation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 772-780.
    19. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Empirical test of a constrained choice discrete model: Mode choice in São Paulo, Brazil," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 103-115, April.
    20. Rita Curtis & Robert L. Hicks, 2000. "The Cost of Sea Turtle Preservation: The Case of Hawaii's Pelagic Longliners," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(5), pages 1191-1197.
    21. Holland, Daniel S. & Jannot, Jason E., 2012. "Bycatch risk pools for the US West Coast Groundfish Fishery," Ecological Economics, Elsevier, vol. 78(C), pages 132-147.
    22. Martin D. Smith, 2002. "Two Econometric Approaches for Predicting the Spatial Behavior of Renewable Resource Harvesters," Land Economics, University of Wisconsin Press, vol. 78(4), pages 522-538.
    23. George R. Parsons & A. Brett Hauber, 1998. "Spatial Boundaries and Choice Set Definition in a Random Utility Model of Recreation Demand," Land Economics, University of Wisconsin Press, vol. 74(1), pages 32-48.
    24. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Incorporating random constraints in discrete models of choice set generation," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 91-102, April.
    25. Smith, Martin D., 2005. "State dependence and heterogeneity in fishing location choice," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 319-340, September.
    26. Hicks, Robert L. & Schnier, Kurt E., 2008. "Eco-labeling and dolphin avoidance: A dynamic model of tuna fishing in the Eastern Tropical Pacific," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 103-116, September.
    27. Daniel S. Holland & Jon G. Sutinen, 2000. "Location Choice in New England Trawl Fisheries: Old Habits Die Hard," Land Economics, University of Wisconsin Press, vol. 76(1), pages 133-149.
    28. Smith, Martin D. & Wilen, James E., 2003. "Economic impacts of marine reserves: the importance of spatial behavior," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 183-206, September.
    29. George R. Parsons & Mary Jo Kealy, 1992. "Randomly Drawn Opportunity Sets in a Random Utility Model of Lake Recreation," Land Economics, University of Wisconsin Press, vol. 68(1), pages 93-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todd Guilfoos & Priya Thomas & Sonja Kolstoe, 2024. "Estimating habit‐forming and variety‐seeking behavior: Valuation of recreational birdwatching," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 1193-1216, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stafford, Tess M., 2018. "Accounting for outside options in discrete choice models: An application to commercial fishing effort," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 159-179.
    2. Hicks, Robert L. & Schnier, Kurt E., 2010. "Spatial regulations and endogenous consideration sets in fisheries," Resource and Energy Economics, Elsevier, vol. 32(2), pages 117-134, April.
    3. Li, Lianhua & Adamowicz, Wiktor & Swait, Joffre, 2015. "The effect of choice set misspecification on welfare measures in random utility models," Resource and Energy Economics, Elsevier, vol. 42(C), pages 71-92.
    4. Hutniczak, Barbara & Münch, Angela, 2018. "Fishermen's location choice under spatio-temporal update of expectations," Journal of choice modelling, Elsevier, vol. 28(C), pages 124-136.
    5. Thiene, Mara & Swait, Joffre & Scarpa, Riccardo, 2017. "Choice set formation for outdoor destinations: The role of motivations and preference discrimination in site selection for the management of public expenditures on protected areas," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 152-173.
    6. Phaneuf, Daniel J. & Smith, V. Kerry, 2006. "Recreation Demand Models," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 2, chapter 15, pages 671-761, Elsevier.
    7. Reimer, Matthew N. & Abbott, Joshua K. & Haynie, Alan C., 2022. "Structural behavioral models for rights-based fisheries," Resource and Energy Economics, Elsevier, vol. 68(C).
    8. Backstrom, Jesse D. & Woodward, Richard T., 2017. "Using Qualitative Site Characteristics Data in Marine Recreational Fishing Models: A New Site Aggregation Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258276, Agricultural and Applied Economics Association.
    9. Scrogin, David & Hofler, Richard & Boyle, Kevin J. & Milon, J. Walter, 2004. "On The Frontier Of Generating Revealed Preference Choice Sets: An Efficient Approach," 2004 Annual meeting, August 1-4, Denver, CO 20134, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Hicks, Robert L. & Schnier, Kurt E., 2006. "A Spatial Model of Dolphin Avoidance in the Eastern Tropical Pacific Ocean," 2006 Annual meeting, July 23-26, Long Beach, CA 21290, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Smith, Martin D. & Provencher, Bill, 2003. "Spatial Search In Commercial Fishing: A Discrete Choice Dynamic Programming Approach," 2003 Annual meeting, July 27-30, Montreal, Canada 21932, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Abbott, Joshua K. & Wilen, James E., 2011. "Dissecting the tragedy: A spatial model of behavior in the commons," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 386-401.
    13. von Haefen, Roger H. & Domanski, Adam, 2018. "Estimation and welfare analysis from mixed logit models with large choice sets," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 101-118.
    14. J. DeShazo & Trudy Cameron & Manrique Saenz, 2009. "The Effect of Consumers’ Real-World Choice Sets on Inferences from Stated Preference Surveys," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 319-343, March.
    15. Martin Smith & James Wilen, 2005. "Heterogeneous and Correlated Risk Preferences in Commercial Fishermen: The Perfect Storm Dilemma," Journal of Risk and Uncertainty, Springer, vol. 31(1), pages 53-71, July.
    16. Cascetta, Ennio & Papola, Andrea, 2009. "Dominance among alternatives in random utility models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 170-179, February.
    17. Moore, Rebecca & MacPherson, Alexander J. & Provencher, Bill, 2005. "A Dynamic Principal-Agent Model of Human-Mediated Aquatic Species Invasions," Staff Papers 12684, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    18. Hicks, Robert L., 2002. "A Comparison Of Stated And Revealed Preference Methods For Fisheries Management," 2002 Annual meeting, July 28-31, Long Beach, CA 19853, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. John N. Ng’ombe & B. Wade Brorsen, 2022. "The Effect of Including Irrelevant Alternatives in Discrete Choice Models of Recreation Demand," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 71-97, June.
    20. Smith, Martin D. & Sanchirico, James N. & Wilen, James E., 2009. "The economics of spatial-dynamic processes: Applications to renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 104-121, January.

    More about this item

    Keywords

    Discrete choice; Consideration set; Random utility model; Spatial discrete choice;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q22 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Fishery

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:60:y:2020:i:c:s0928765518304408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.