Author
Listed:
- Wang, Shenhao
- Mo, Baichuan
- Zheng, Yunhan
- Hess, Stephane
- Zhao, Jinhua
Abstract
Numerous studies have compared machine learning (ML) and discrete choice models (DCMs) in predicting travel demand. However, these studies often lack generalizability as they compare models deterministically without considering contextual variations. To address this limitation, our study develops an empirical benchmark by designing a tournament model to learn the intrinsic predictive values of ML and DCMs. This novel approach enables us to efficiently summarize a large number of experiments, quantify the randomness in model comparisons, and use formal statistical tests to differentiate between the model and contextual effects. This benchmark study compares two large-scale data sources: a database compiled from literature review summarizing 136 experiments from 35 studies, and our own experiment data, encompassing a total of 6970 experiments from 105 models and 12 model families, tested repeatedly on three datasets, sample sizes, and choice categories. This benchmark study yields two key findings. Firstly, many ML models, particularly the ensemble methods and deep learning, statistically outperform the DCM family and its individual variants (i.e., multinomial, nested, and mixed logit), thus corroborating with the previous research. However, this study also highlights the crucial role of the contextual factors (i.e., data sources, inputs and choice categories), which can explain models’ predictive performance more effectively than the differences in model types alone. Model performance varies significantly with data sources, improving with larger sample sizes and lower dimensional alternative sets. After controlling all the model and contextual factors, significant randomness still remains, implying inherent uncertainty in such model comparisons. Overall, we suggest that future researchers shift more focus from context-specific and deterministic model comparisons towards examining model transferability across contexts and characterizing the inherent uncertainty in ML, thus creating more robust and generalizable next-generation travel demand models.
Suggested Citation
Wang, Shenhao & Mo, Baichuan & Zheng, Yunhan & Hess, Stephane & Zhao, Jinhua, 2024.
"Comparing hundreds of machine learning and discrete choice models for travel demand modeling: An empirical benchmark,"
Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
Handle:
RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001851
DOI: 10.1016/j.trb.2024.103061
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001851. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.