IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v148y2021icp60-81.html
   My bibliography  Save this article

Deep neural networks for choice analysis: A statistical learning theory perspective

Author

Listed:
  • Wang, Shenhao
  • Wang, Qingyi
  • Bailey, Nate
  • Zhao, Jinhua

Abstract

Although researchers increasingly use deep neural networks (DNN) to analyze individual choices, overfitting and interpretability issues remain obstacles in theory and practice. This study presents a statistical learning theoretical framework to examine the tradeoff between estimation and approximation errors, and between the quality of prediction and of interpretation. It provides an upper bound on the estimation error of the prediction quality in DNN, measured by zero-one and log losses, shedding light on why DNN models do not overfit. It proposes a metric for interpretation quality by formulating a function approximation loss that measures the difference between true and estimated choice probability functions. It argues that the binary logit (BNL) and multinomial logit (MNL) models are the specific cases of DNNs, since the latter always has smaller approximation errors. We explore the relative performance of DNN and classical choice models through three simulation scenarios comparing DNN, BNL, and binary mixed logit models (BXL), as well as one experiment comparing DNN to BNL, BXL, MNL, and mixed logit (MXL) in analyzing the choice of trip purposes based on the National Household Travel Survey 2017. The results indicate that DNN can be used for choice analysis beyond the current practice of demand forecasting because it has the inherent utility interpretation and the power of automatically learning utility specification. Our results suggest DNN outperforms BNL, BXL, MNL, and MXL models in both prediction and interpretation when the sample size is large (≥O(104)), the input dimension is high, or the true data generating process is complex, while performing worse when the opposite is true. DNN outperforms BNL and BXL in zero-one, log, and approximation losses for most of the experiments, and the larger sample size leads to greater incremental value of using DNN over classical discrete choice models. Overall, this study introduces the statistical learning theory as a new foundation for high-dimensional data, complex statistical models, and non-asymptotic data regimes in choice analysis, and the experiments show the effective prediction and interpretation of DNN for its applications to policy and behavioral analysis.

Suggested Citation

  • Wang, Shenhao & Wang, Qingyi & Bailey, Nate & Zhao, Jinhua, 2021. "Deep neural networks for choice analysis: A statistical learning theory perspective," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 60-81.
  • Handle: RePEc:eee:transb:v:148:y:2021:i:c:p:60-81
    DOI: 10.1016/j.trb.2021.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521000564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Train, 1980. "A Structured Logit Model of Auto Ownership and Mode Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 357-370.
    2. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    3. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    6. Jonathan Cohen & Keith Marzilli Ericson & David Laibson & John Myles White, 2020. "Measuring Time Preferences," Journal of Economic Literature, American Economic Association, vol. 58(2), pages 299-347, June.
    7. Mozolin, M. & Thill, J. -C. & Lynn Usery, E., 2000. "Trip distribution forecasting with multilayer perceptron neural networks: A critical evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 34(1), pages 53-73, January.
    8. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    9. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    10. Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
    11. Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
    12. Liang Tang & Chenfeng Xiong & Lei Zhang, 2015. "Decision tree method for modeling travel mode switching in a dynamic behavioral process," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(8), pages 833-850, December.
    13. Hensher, David A. & Ton, Tu T., 2000. "A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(3), pages 155-172, September.
    14. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    2. Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
    3. Qingyi Wang & Shenhao Wang & Yunhan Zheng & Hongzhou Lin & Xiaohu Zhang & Jinhua Zhao & Joan Walker, 2023. "Deep hybrid model with satellite imagery: how to combine demand modeling and computer vision for behavior analysis?," Papers 2303.04204, arXiv.org, revised Feb 2024.
    4. Wang, Qingyi & Wang, Shenhao & Zheng, Yunhan & Lin, Hongzhou & Zhang, Xiaohu & Zhao, Jinhua & Walker, Joan, 2024. "Deep hybrid model with satellite imagery: How to combine demand modeling and computer vision for travel behavior analysis?," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shenhao & Mo, Baichuan & Zhao, Jinhua, 2021. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 333-358.
    2. Shenhao Wang & Baichuan Mo & Jinhua Zhao, 2020. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Papers 2010.11644, arXiv.org.
    3. Shenhao Wang & Baichuan Mo & Stephane Hess & Jinhua Zhao, 2021. "Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark," Papers 2102.01130, arXiv.org.
    4. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
    5. Shenhao Wang & Qingyi Wang & Nate Bailey & Jinhua Zhao, 2018. "Deep Neural Networks for Choice Analysis: A Statistical Learning Theory Perspective," Papers 1810.10465, arXiv.org, revised Sep 2019.
    6. Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    7. Salon, Deborah, 2009. "Neighborhoods, cars, and commuting in New York City: A discrete choice approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 180-196, February.
    8. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    9. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    10. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    11. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    12. Gelhausen, Marc Christopher, 2007. "A Generalized Neural Logit Model for Airport and Access Mode Choice in Germany," MPRA Paper 4313, University Library of Munich, Germany, revised 2007.
    13. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    14. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    15. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    16. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    17. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    18. de Lucio, Juan, 2021. "Estimación adelantada del crecimiento regional mediante redes neuronales LSTM," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 49, pages 45-64.
    19. Didier Nibbering, 2023. "A High-dimensional Multinomial Logit Model," Monash Econometrics and Business Statistics Working Papers 19/23, Monash University, Department of Econometrics and Business Statistics.
    20. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:148:y:2021:i:c:p:60-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.