Improved imputation of rule sets in class association rule modeling: application to transportation mode choice
Author
Abstract
Suggested Citation
DOI: 10.1007/s11116-021-10238-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Joon-Kyu & Yoo, Kwang-Eui & Song, Ki-Han, 2016. "A study on travelers' transport mode choice behavior using the mixed logit model: A case study of the Seoul-Jeju route," Journal of Air Transport Management, Elsevier, vol. 56(PB), pages 131-137.
- Kim, Seheon & Rasouli, Soora & Timmermans, Harry & Yang, Dujuan, 2018. "Estimating panel effects in probabilistic representations of dynamic decision trees using bayesian generalized linear mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 168-184.
- Jarad Beckman & Konstadinos Goulias, 2008. "Immigration, residential location, car ownership, and commuting behavior: a multivariate latent class analysis from California," Transportation, Springer, vol. 35(5), pages 655-671, August.
- Marcel Paulssen & Dirk Temme & Akshay Vij & Joan Walker, 2014. "Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice," Transportation, Springer, vol. 41(4), pages 873-888, July.
- Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
- Zhan, Guangjun & Yan, Xuedong & Zhu, Shanjiang & Wang, Yun, 2016. "Using hierarchical tree-based regression model to examine university student travel frequency and mode choice patterns in China," Transport Policy, Elsevier, vol. 45(C), pages 55-65.
- Li, Linchao & Zhu, Jiasong & Zhang, Hailong & Tan, Huachun & Du, Bowen & Ran, Bin, 2020. "Coupled application of generative adversarial networks and conventional neural networks for travel mode detection using GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 282-292.
- Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
- Zheng Zhu & Xiqun Chen & Chenfeng Xiong & Lei Zhang, 2018. "A mixed Bayesian network for two-dimensional decision modeling of departure time and mode choice," Transportation, Springer, vol. 45(5), pages 1499-1522, September.
- Liang Tang & Chenfeng Xiong & Lei Zhang, 2015. "Decision tree method for modeling travel mode switching in a dynamic behavioral process," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(8), pages 833-850, December.
- Koppelman, Frank S. & Sethi, Vaneet, 2005. "Incorporating variance and covariance heterogeneity in the Generalized Nested Logit model: an application to modeling long distance travel choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 825-853, November.
- Hensher, David A. & Ton, Tu T., 2000. "A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(3), pages 155-172, September.
- Diana Kusumastuti & Els Hannes & Davy Janssens & Geert Wets & Benedict Dellaert, 2010. "Scrutinizing individuals’ leisure-shopping travel decisions to appraise activity-based models of travel demand," Transportation, Springer, vol. 37(4), pages 647-661, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Pengfang & Zhang, Xiaoqiang & Gao, Dongsheng, 2024. "Preference heterogeneity analysis on train choice behaviour of high-speed railway passengers: A case study in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
- Liang Tang & Chenfeng Xiong & Lei Zhang, 2015. "Decision tree method for modeling travel mode switching in a dynamic behavioral process," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(8), pages 833-850, December.
- Zheng Zhu & Xiqun Chen & Chenfeng Xiong & Lei Zhang, 2018. "A mixed Bayesian network for two-dimensional decision modeling of departure time and mode choice," Transportation, Springer, vol. 45(5), pages 1499-1522, September.
- S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
- Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
- Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
- Wang, Shenhao & Wang, Qingyi & Bailey, Nate & Zhao, Jinhua, 2021. "Deep neural networks for choice analysis: A statistical learning theory perspective," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 60-81.
- Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
- Koo, Tay T.R. & Wu, Cheng-Lung (Richard) & Dwyer, Larry, 2010. "Ground travel mode choices of air arrivals at regional destinations: The significance of tourism attributes and destination contexts," Research in Transportation Economics, Elsevier, vol. 26(1), pages 44-53.
- Rosa Arroyo & Lidón Mars & Tomás Ruiz, 2018. "Perceptions of Pedestrian and Cyclist Environments, Travel Behaviors, and Social Networks," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
- Els Hannes & Diana Kusumastuti & Maikel Espinosa & Davy Janssens & Koen Vanhoof & Geert Wets, 2012. "Mental maps and travel behaviour: meanings and models," Journal of Geographical Systems, Springer, vol. 14(2), pages 143-165, April.
- Feng Liu & Tom Bellemans & Davy Janssens & Geert Wets & Muhammad Adnan, 2024. "A Methodological Approach for Enriching Activity–Travel Schedules with In-Home Activities," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
- Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
- Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
- Yueqi Mao & Qiang Mei & Peng Jing & Ye Zha & Ying Xue & Jiahui Huang & Danning Shao & Pan Luo, 2022. "Factors Affecting the Parental Intention of Using AVs to Escort Children: An Integrated SEM–Hybrid Choice Model Approach," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
- Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
- Beno Mesarec & Branka Trček, 2024. "Suggestions and Solutions for Enhancing Active Commuting to the University of Maribor and Advancing CO 2 Emission Reduction," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
- Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
- Gustavo García-Melero & Rubén Sainz-González & Pablo Coto-Millán & Alejandra Valencia-Vásquez, 2021. "Sustainable Mobility Policy Analysis Using Hybrid Choice Models: Is It the Right Choice?," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
- Arentze, Theo & Timmermans, Harry, 2007. "Parametric action decision trees: Incorporating continuous attribute variables into rule-based models of discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 772-783, August.
More about this item
Keywords
Rule merging; FP-tree; Class association rules; Transportation mode choice;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:50:y:2023:i:1:d:10.1007_s11116-021-10238-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.