IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v183y2024ics0191261524000547.html
   My bibliography  Save this article

Congestive mode-switching and economies of scale on a bus route

Author

Listed:
  • Pandey, Ayush
  • Lehe, Lewis J.

Abstract

This paper introduces a type of circular causation called Congestive Mode-Switching (CMS) that may arise when an increase in congestion penalizes transit relative to driving. In turn, rising congestion persuades some transit riders to drive, which exacerbates congestion further, and so on. This circular causation can beget multiple equilibria with different levels of congestion and transit ridership. The paper explores this logic with a static model of a bus route. When the bus fleet size is fixed, CMS applies because congestion raises the bus cycle time and thus lowers bus frequency, resulting in higher wait times. When the fleet size depends on bus ridership, CMS is joined by economies of scale as a second source of circular causation. We derive the system’s equilibria using a static model in the vein of Walters (1961), which permits us to graphically characterize equilibria in useful ways. The comparative statics of a road improvement show how feedback alters first-order effects. A Downs-Thomson paradox is not possible, because a road improvement aids buses even more than cars. Continuous-time stability analysis shows that multiple equilibria may be stable.

Suggested Citation

  • Pandey, Ayush & Lehe, Lewis J., 2024. "Congestive mode-switching and economies of scale on a bus route," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:transb:v:183:y:2024:i:c:s0191261524000547
    DOI: 10.1016/j.trb.2024.102930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524000547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    2. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    3. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    4. George Kocur & Chris Hendrickson, 1982. "Design of Local Bus Service with Demand Equilibration," Transportation Science, INFORMS, vol. 16(2), pages 149-170, May.
    5. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    6. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    7. Giorgio Giorgi & Cesare Zuccotti, 2015. "An Overview on D-stable Matrices," DEM Working Papers Series 097, University of Pavia, Department of Economics and Management.
    8. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    9. Haywood, Luke & Koning, Martin & Monchambert, Guillaume, 2017. "Crowding in public transport: Who cares and why?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 215-227.
    10. Verhoef, Erik T., 1999. "Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing," Regional Science and Urban Economics, Elsevier, vol. 29(3), pages 341-369, May.
    11. Murphy, Kevin M & Shleifer, Andrei & Vishny, Robert W, 1989. "Industrialization and the Big Push," Journal of Political Economy, University of Chicago Press, vol. 97(5), pages 1003-1026, October.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    13. Kitamura, R. & Nakayama, S. & Yamamoto, T., 1999. "Self-reinforcing motorization: can travel demand management take us out of the social trap?," Transport Policy, Elsevier, vol. 6(3), pages 135-145, July.
    14. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    15. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    16. Watling, David, 1996. "Asymmetric problems and stochastic process models of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 339-357, October.
    17. Carlos F. Daganzo, 1983. "Stochastic Network Equilibrium with Multiple Vehicle Types and Asymmetric, Indefinite Link Cost Jacobians," Transportation Science, INFORMS, vol. 17(3), pages 282-300, August.
    18. , & , H., 2011. "Survival of dominated strategies under evolutionary dynamics," Theoretical Economics, Econometric Society, vol. 6(3), September.
    19. Savage, Ian, 2004. "Management objectives and the causes of mass transit deficits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 181-199, March.
    20. Iryo, Takamasa, 2019. "Instability of departure time choice problem: A case with replicator dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 353-364.
    21. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    22. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
    23. Le Minh Kieu & Ashish Bhaskar & Edward Chung, 2015. "Empirical modelling of the relationship between bus and car speeds on signalised urban networks," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(4), pages 465-482, June.
    24. Becker, Gary S, 1991. "A Note on Restaurant Pricing and Other Examples of Social Influences on Price," Journal of Political Economy, University of Chicago Press, vol. 99(5), pages 1109-1116, October.
    25. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    26. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    27. David, Quentin & Foucart, Renaud, 2014. "Modal choice and optimal congestion," Regional Science and Urban Economics, Elsevier, vol. 48(C), pages 12-20.
    28. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    29. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    30. Liu, Hao & Devunuri, Saipraneeth & Lehe, Lewis & Gayah, Vikash V., 2023. "Scale effects in ridesplitting: A case study of the City of Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    31. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    32. Charles R. Plott & Jared Smith, 1999. "Instability of Equilibria in Experimental Markets: Upward‐Sloping Demands, Externalities, and Fad‐Like Incentives," Southern Economic Journal, John Wiley & Sons, vol. 65(3), pages 405-426, January.
    33. de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
    34. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    35. Sergio Jara-Díaz & Antonio Gschwender, 2009. "The effect of financial constraints on the optimal design of public transport services," Transportation, Springer, vol. 36(1), pages 65-75, January.
    36. Giulio Cantarella & Pietro Velonà & David Watling, 2015. "Day-to-day Dynamics & Equilibrium Stability in A Two-Mode Transport System with Responsive bus Operator Strategies," Networks and Spatial Economics, Springer, vol. 15(3), pages 485-506, September.
    37. Wardman, Mark & Chintakayala, V. Phani K. & de Jong, Gerard, 2016. "Values of travel time in Europe: Review and meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 93-111.
    38. Lehe, Lewis J. & Pandey, Ayush, 2020. "Hyperdemand: A static traffic model with backward-bending demand curves," Economics of Transportation, Elsevier, vol. 24(C).
    39. Ying, Jiang Qian & Yang, Hai, 2005. "Sensitivity analysis of stochastic user equilibrium flows in a bi-modal network with application to optimal pricing," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 769-795, November.
    40. André de Palma & Mogens Fosgerau, 2010. "Dynamic and Static congestion models: A review," Working Papers hal-00539166, HAL.
    41. Krugman, Paul, 1993. "On the number and location of cities," European Economic Review, Elsevier, vol. 37(2-3), pages 293-298, April.
    42. Charles R. Plott & Jared Smith, 1999. "Instability of Equilibria in Experimental Markets: Upward-Sloping Demands, Externalities, and Fad-Like Incentives," Southern Economic Journal, John Wiley & Sons, vol. 65(3), pages 405-426, January.
    43. Bar-Yosef, Asaf & Martens, Karel & Benenson, Itzhak, 2013. "A model of the vicious cycle of a bus line," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 37-50.
    44. Gonzales, Eric J., 2015. "Coordinated pricing for cars and transit in cities with hypercongestion," Economics of Transportation, Elsevier, vol. 4(1), pages 64-81.
    45. C. Angelo Guevara, 2017. "Mode-valued differences of in-vehicle travel time Savings," Transportation, Springer, vol. 44(5), pages 977-997, September.
    46. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
    47. Mohammad Ansari Esfeh & S. C. Wirasinghe & Saeid Saidi & Lina Kattan, 2021. "Waiting time and headway modelling for urban transit systems – a critical review and proposed approach," Transport Reviews, Taylor & Francis Journals, vol. 41(2), pages 141-163, March.
    48. Stephen Morris & Hyun Song Shin, 2001. "Rethinking Multiple Equilibria in Macroeconomic Modeling," NBER Chapters, in: NBER Macroeconomics Annual 2000, Volume 15, pages 139-182, National Bureau of Economic Research, Inc.
    49. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    50. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    51. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    3. Fielbaum, Andres, 2024. "On the relationship between free public transport, stop spacing, and optimal frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    4. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    5. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
    6. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    7. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. Iryo, Takamasa & Smith, Michael J. & Watling, David, 2020. "Stabilisation strategy for unstable transport systems under general evolutionary dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 136-151.
    9. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.
    10. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    11. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    12. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    13. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    14. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    15. Andrés Fielbaum & Sergio Jara-Díaz & Antonio Gschwender, 2018. "Transit Line Structures in a General Parametric City: The Role of Heuristics," Transportation Science, INFORMS, vol. 52(5), pages 1092-1105, October.
    16. Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs & Daziano, Ricardo A., 2017. "Estimation of crowding discomfort in public transport: Results from Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 311-326.
    17. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    18. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    19. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    20. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:183:y:2024:i:c:s0191261524000547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.