IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v106y2017icp266-292.html
   My bibliography  Save this article

A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method

Author

Listed:
  • Ghiasi, Amir
  • Hussain, Omar
  • Qian, Zhen (Sean)
  • Li, Xiaopeng

Abstract

The projected rapid growth of the market penetration of connected and autonomous vehicle technologies (CAV) highlights the need for preparing sufficient highway capacity for a mixed traffic environment where a portion of vehicles are CAVs and the remaining are human-driven vehicles (HVs). This study proposes an analytical capacity model for highway mixed traffic based on a Markov chain representation of spatial distribution of heterogeneous and stochastic headways. This model captures not only the full spectrum of CAV market penetration rates but also all possible values of CAV platooning intensities that largely affect the spatial distribution of different headway types. Numerical experiments verify that this analytical model accurately quantifies the corresponding mixed traffic capacity at various settings. This analytical model allows for examination of the impact of different CAV technology scenarios on mixed traffic capacity. We identify sufficient and necessary conditions for the mixed traffic capacity to increase (or decrease) with CAV market penetration rate and platooning intensity. These theoretical results caution scholars not to take CAVs as a sure means of increasing highway capacity for granted but rather to quantitatively analyze the actual headway settings before drawing any qualitative conclusion. This analytical framework further enables us to build a compact lane management model to efficiently determine the optimal number of dedicated CAV lanes to maximize mixed traffic throughput of a multi-lane highway segment. This optimization model addresses varying demand levels, market penetration rates, platooning intensities and technology scenarios. The model structure is examined from a theoretical perspective and an analytical approach is identified to solve the optimal CAV lane number at certain common headway settings. Numerical analyses illustrate the application of this lane management model and draw insights into how the key parameters affect the optimal CAV lane solution and the corresponding optimal capacity. This model can serve as a useful and simple decision tool for near future CAV lane management.

Suggested Citation

  • Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
  • Handle: RePEc:eee:transb:v:106:y:2017:i:c:p:266-292
    DOI: 10.1016/j.trb.2017.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517302278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    2. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. Cherry, Christopher R. & Adelakun, Adebola A., 2012. "Truck driver perceptions and preferences: Congestion and conflict, managed lanes, and tolls," Transport Policy, Elsevier, vol. 24(C), pages 1-9.
    5. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    6. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    7. Dahlgren, Joy, 2002. "High-occupancy/toll lanes: where should they be implemented?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 239-255, March.
    8. Chu, Chih-Peng & Tsai, Jyh-Fa & Hu, Shou-Ren, 2012. "Optimal starting location of an HOV lane for a linear monocentric urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 457-466.
    9. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    10. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    11. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    12. Shladover, Steven E & Nowakowski, Christopher & Lu, Xiao-Yun & Hoogendoorn, Raymond, 2014. "Using Cooperative Adaptive Cruise Control (CACC) to Form High-Performance Vehicle Streams," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3m89p611, Institute of Transportation Studies, UC Berkeley.
    13. Georges M. Arnaout & Jean-Paul Arnaout, 2014. "Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(2), pages 186-199, March.
    14. Shladover, Steven & VanderWerf, Joel & Miller, Mark A. & Kourjanskaia, Natalia & Krishnan, Hariharan, 2001. "Development and Performance Evaluation of AVCSS Deployment Sequences to Advance from Today's Driving Environment to Full Automation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt33w2d55j, Institute of Transportation Studies, UC Berkeley.
    15. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Jiang, Yangsheng & Sun, Siyuan & Zhu, Fangyi & Wu, Yunxia & Yao, Zhihong, 2023. "A mixed capacity analysis and lane management model considering platoon size and intensity of CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    5. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    7. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    8. Shatanawi, Mohamad & Alatawneh, Anas & Mészáros, Ferenc, 2022. "Implications of static and dynamic road pricing strategies in the era of autonomous and shared autonomous vehicles using simulation-based dynamic traffic assignment: The case of Budapest," Research in Transportation Economics, Elsevier, vol. 95(C).
    9. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2022. "Integrated path controlling and subsidy scheme for mobility and environmental management in automated transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    10. Li, Chuan-Yao & Huang, Hai-Jun, 2017. "Morning commute in a single-entry traffic corridor with early and late arrivals," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 23-49.
    11. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    12. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    13. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    14. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
    15. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    16. Sala, Marcel & Soriguera, Francesc, 2021. "Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 116-131.
    17. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    18. van den Berg, Vincent A.C. & Meurs, Henk & Verhoef, Erik T., 2022. "Business models for Mobility as an Service (MaaS)," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 203-229.
    19. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    20. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:106:y:2017:i:c:p:266-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.