IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v163y2022icp88-118.html
   My bibliography  Save this article

Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics

Author

Listed:
  • Wang, Jian
  • Lu, Lili
  • Peeta, Srinivas

Abstract

In real-world driving environments, a platoon of connected and autonomous vehicles (CAVs) will be subject to many disturbances (e.g., aerodynamic drag, dynamic road gradients) that can prevent them from achieving desired control accurately. These disturbances can cause uncertainties in the vehicle dynamics, reducing platoon safety and mobility. To address this problem, this study proposes a robust cooperative control (RCC) strategy, developed as a minimax problem, to ensure the safe and efficient maneuvering of a CAV platoon in the worst-case situation due to uncertainties in the vehicle dynamics. The maximization subproblem of the minimax problem determines the inputs of the uncertainties to maximize the cost function (i.e., the platoon performance indicator), while the minimization subproblem seeks to optimize the control decisions for all following vehicles in the platoon to minimize the cost function using inputs of the uncertainties from the maximization subproblem. A novel partition-based method of feasible direction is proposed to solve the minimax problem. It is globally convergent and computationally efficient, enabling the RCC strategy to be deployed in real time. The conditions for robust stability of the CAV platoon are also analyzed. Results from numerical studies show that compared to a control strategy that ignores uncertainties in vehicle dynamics, the RCC strategy can substantially improve the platoon performance under disturbances. Hence, it can be used to enable the safe and efficient maneuvering of CAV platoons in a real-world driving environment.

Suggested Citation

  • Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
  • Handle: RePEc:eee:transb:v:163:y:2022:i:c:p:88-118
    DOI: 10.1016/j.trb.2022.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522001114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jian & Peeta, Srinivas & Lu, Lili & Li, Tao, 2019. "Multiclass information flow propagation control under vehicle-to-vehicle communication environments," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 96-121.
    2. Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
    3. Wang, Jian & Gong, Siyuan & Peeta, Srinivas & Lu, Lili, 2019. "A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 271-301.
    4. Gong, Siyuan & Shen, Jinglai & Du, Lili, 2016. "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 314-334.
    5. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    6. Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
    7. Zhou, Yang & Wang, Meng & Ahn, Soyoung, 2019. "Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 69-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2023. "An autonomous platoon formation strategy to optimize CAV car-following stability under periodic disturbance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yang & Zhong, Xinzhi & Chen, Qian & Ahn, Soyoung & Jiang, Jiwan & Jafarsalehi, Ghazaleh, 2023. "Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    2. Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
    3. Tao Wang & Sihong Xie & Xiaofei Ye & Xingchen Yan & Jun Chen & Wenyong Li, 2020. "Analyzing E-Bikers’ Risky Riding Behaviors, Safety Attitudes, Risk Perception, and Riding Confidence with the Structural Equation Model," IJERPH, MDPI, vol. 17(13), pages 1-18, July.
    4. Jin Xie & Xiaofei Ye & Zhongzhen Yang & Xingchen Yan & Lili Lu & Zhen Yang & Tao Wang, 2019. "Impact of Risk and Benefit on the Suppliers’ and Managers’ Intention of Shared Parking in Residential Areas," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    5. Liu, Chunyu & Sheng, Zihao & Chen, Sikai & Shi, Haotian & Ran, Bin, 2023. "Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    6. Zhou, Yang & Wang, Meng & Ahn, Soyoung, 2019. "Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 69-86.
    7. Wang, Jian & Gong, Siyuan & Peeta, Srinivas & Lu, Lili, 2019. "A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 271-301.
    8. Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
    9. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part I: Modeling and solution algorithm design," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 174-198.
    10. Qiu, Jiahua & Du, Lili, 2023. "Cooperative trajectory control for synchronizing the movement of two connected and autonomous vehicles separated in a mixed traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    11. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    12. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 199-216.
    13. Wang, Jian & Peeta, Srinivas & Lu, Lili & Li, Tao, 2019. "Multiclass information flow propagation control under vehicle-to-vehicle communication environments," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 96-121.
    14. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    15. Yating Zhu & Xiaofei Ye & Jun Chen & Xingchen Yan & Tao Wang, 2020. "Impact of Cruising for Parking on Travel Time of Traffic Flow," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    16. Gu, Xiaoning & Chen, Chao & Feng, Tao & Yao, Baozhen, 2024. "A novel regional traffic control strategy for mixed traffic system with the construction of congestion warning communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    17. Chen, Shukai & Wang, Hua & Meng, Qiang, 2021. "Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 289-315.
    18. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2022. "Integrated path controlling and subsidy scheme for mobility and environmental management in automated transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    19. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    20. Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:163:y:2022:i:c:p:88-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.