IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v639y2024ics0378437124001754.html
   My bibliography  Save this article

A novel regional traffic control strategy for mixed traffic system with the construction of congestion warning communities

Author

Listed:
  • Gu, Xiaoning
  • Chen, Chao
  • Feng, Tao
  • Yao, Baozhen

Abstract

Large-scale congestion can lead to traffic paralysis, which severely hampers the flow of vehicles and disrupts the normal functioning of urban traffic. Traffic optimization strategies can effectively improve the performance of road networks, but often ignore the impact of regional traffic conditions and equity. This paper presents a novel traffic strategy to solve regional traffic congestion in large cities, particularly focusing on mixed traffic scenarios of connected and non-connected vehicles. The proposed method involves monitoring the traffic condition of the congestion warning community and adjusting the internal access flow within each region. The problem is formulated as a Stackelberg game, with traffic policymakers and road users as the key players. The upper layer aims to control traffic access by issuing a community warning index, with the objective of minimizing congestion warning conditions within the community. This information is then disseminated to connected vehicles which utilize it to generate personalized route guidance, while non-connected vehicles remain unaffected. The lower-level objective is to allocate vehicles in the transportation network in a user-optimal manner. To solve the bi-level programming model, the paper introduces a variable neighborhood search approach based on graph theory. The Frank-Wolfe algorithm is used to solve the lower-level model, with a penalty function introduced to transform the constrained traffic assignment problem (TAP) into an unconstrained TAP. The proposed method is applied using the data of Beijing urban road network and a sensitivity analysis is conducted to examine the impacts of critical parameters, such as regional partitioning and mixed traffic proportion. The results show that the method exhibits improved optimization performance across different parameter settings, effectively utilizing idle links and contributing to a reduction in the occurrence of traffic warning regions.

Suggested Citation

  • Gu, Xiaoning & Chen, Chao & Feng, Tao & Yao, Baozhen, 2024. "A novel regional traffic control strategy for mixed traffic system with the construction of congestion warning communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
  • Handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s0378437124001754
    DOI: 10.1016/j.physa.2024.129666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124001754
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    2. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    3. André Duarte & Camila Garcia & Grigoris Giannarakis & Susana Limão & Amalia Polydoropoulou & Nikolaos Litinas, 2010. "New approaches in transportation planning: happiness and transport economics," Netnomics, Springer, vol. 11(1), pages 5-32, April.
    4. Wang, Jian & Gong, Siyuan & Peeta, Srinivas & Lu, Lili, 2019. "A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 271-301.
    5. Poulopoulou, Maria & Spyropoulou, Ioanna, 2019. "Active traffic management in urban areas: Is it effective for professional drivers? The case of variable message signs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 412-423.
    6. Zhu, Jing & Fan, Yingling, 2018. "Daily travel behavior and emotional well-being: Effects of trip mode, duration, purpose, and companionship," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 360-373.
    7. Nie, Yu & Zhang, H. M. & Lee, Der-Horng, 2004. "Models and algorithms for the traffic assignment problem with link capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 285-312, May.
    8. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
    9. Jacob, Celine & Abdulhai, Baher, 2010. "Machine learning for multi-jurisdictional optimal traffic corridor control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 53-64, February.
    10. Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
    11. Tang, T.Q. & Shi, W.F. & Yang, X.B. & Wang, Y.P. & Lu, G.Q., 2013. "A macro traffic flow model accounting for road capacity and reliability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6300-6306.
    12. Leclercq, Ludovic & Ladino, Andres & Becarie, Cécile, 2021. "Enforcing optimal routing through dynamic avoidance maps," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 118-137.
    13. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2016. "Clustering of heterogeneous networks with directional flows based on “Snake” similarities," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 250-269.
    14. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    15. Chunguang Liu & Xinyu Zuo & Xiaoning Gu & Mengru Shao & Chao Chen, 2023. "Activity Duration under the COVID-19 Pandemic: A Comparative Analysis among Different Urbanized Areas Using a Hazard-Based Duration Model," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    16. Larsson, Torbjörn & Patriksson, Michael, 1995. "An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 433-455, December.
    17. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    2. Tang, Siyi & Zheng, Fangfang & Zheng, Nan & Liu, Xiaobo, 2024. "An efficient multi-modal urban transportation network partitioning approach for three-dimensional macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Leclercq, Ludovic & Ladino, Andres & Becarie, Cécile, 2021. "Enforcing optimal routing through dynamic avoidance maps," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 118-137.
    4. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    5. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    6. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    7. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    9. Yao, Wenbin & Chen, Nuo & Su, Hongyang & Hu, Youwei & Jin, Sheng & Rong, Donglei, 2023. "A novel self-adaption macroscopic fundamental diagram considering network heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    10. Mariotte, Guilhem & Leclercq, Ludovic & Batista, S.F.A. & Krug, Jean & Paipuri, Mahendra, 2020. "Calibration and validation of multi-reservoir MFD models: A case study in Lyon," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 62-86.
    11. Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
    12. Batista, S.F.A. & Leclercq, Ludovic & Geroliminis, Nikolas, 2019. "Estimation of regional trip length distributions for the calibration of the aggregated network traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 192-217.
    13. Zhang, Yuan & Li, Lu & Zhang, Wenbo & Cheng, Qixiu, 2022. "GATC and DeepCut: Deep spatiotemporal feature extraction and clustering for large-scale transportation network partition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    15. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    16. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    17. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    18. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    19. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    20. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s0378437124001754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.