Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability
Author
Abstract
Suggested Citation
DOI: 10.1016/j.trb.2019.07.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
- Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
- Nowakowski, Christopher & Shladover, Steven E & Lu, Xiao-Yun & Thompson, Deborah & Kailas, Aravind, 2015. "Cooperative Adaptive Cruise Control (CACC) for Truck Platooning: Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7jf9n5wm, Institute of Transportation Studies, UC Berkeley.
- Gong, Siyuan & Shen, Jinglai & Du, Lili, 2016. "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 314-334.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan Ding & Jiwan Jiang & Yang Zhou & Ran Yi & Huachun Tan, 2020. "Unravelling the Impacts of Parameters on Surrogate Safety Measures for a Mixed Platoon," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
- Shen, Jinglai & Du, Lili, 2024. "Sequential feasibility and constraint properties of CAV platoons under various vehicle dynamics and safety distance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
- Ren, Weilin & Cheng, Rongjun & Ge, Hongxia, 2021. "Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Chakraborty, Sayan & Cui, Leilei & Ozbay, Kaan & Jiang, Zhong-Ping, 2024. "Automated lane changing control in mixed traffic: An adaptive dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 187(C).
- Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
- Zhou, Yang & Zhong, Xinzhi & Chen, Qian & Ahn, Soyoung & Jiang, Jiwan & Jafarsalehi, Ghazaleh, 2023. "Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Xiao Xiao & Yunlong Zhang & Xiubin Bruce Wang & Shu Yang & Tianyi Chen, 2021. "Hierarchical Longitudinal Control for Connected and Automated Vehicles in Mixed Traffic on a Signalized Arterial," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
- Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
- Wu, Zhibei & Sun, Jitao & Xu, Ruihua, 2021. "Consensus-based connected vehicles platoon control via impulsive control method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Zhang, Geng & Yin, Le & Pan, Dong-Bo & Zhang, Yu & Cui, Bo-Yuan & Jiang, Shan, 2020. "Research on multiple vehicles’ continuous self-delayed velocities on traffic flow with vehicle-to-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Cui, Bo-Yuan & Zhang, Geng & Ma, Qing-Lu, 2021. "A stable velocity control strategy for a discrete-time car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
- Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
- Liu, Chunyu & Sheng, Zihao & Chen, Sikai & Shi, Haotian & Ran, Bin, 2023. "Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
- Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
- Zhou, Yang & Zhong, Xinzhi & Chen, Qian & Ahn, Soyoung & Jiang, Jiwan & Jafarsalehi, Ghazaleh, 2023. "Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Wang, Jian & Zhou, Anye & Liu, Zhiyuan & Peeta, Srinivas, 2024. "Robust cooperative control strategy for a platoon of connected and autonomous vehicles against sensor errors and control errors simultaneously in a real-world driving environment," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
- Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
- Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part I: Modeling and solution algorithm design," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 174-198.
- Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
- Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 199-216.
- Zhou, Linjie & Ruan, Tiancheng & Ma, Ke & Dong, Changyin & Wang, Hao, 2021. "Impact of CAV platoon management on traffic flow considering degradation of control mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
- Qiu, Jiahua & Du, Lili, 2023. "Cooperative trajectory control for synchronizing the movement of two connected and autonomous vehicles separated in a mixed traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
- Shen, Jinglai & Du, Lili, 2024. "Sequential feasibility and constraint properties of CAV platoons under various vehicle dynamics and safety distance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
- Liu, Chunyu & Sheng, Zihao & Chen, Sikai & Shi, Haotian & Ran, Bin, 2023. "Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
- Wang, Jian & Gong, Siyuan & Peeta, Srinivas & Lu, Lili, 2019. "A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 271-301.
- Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
- Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Chuanwei Zhang & Xibo Xue & Peilin Qin & Lingling Dong, 2023. "Research on a Speed Guidance Strategy for Mine Vehicles in Three-Fork Roadways Based on Vehicle–Road Coordination," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
- Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
- Kishore Bhoopalam, A. & van den Berg, R. & Agatz, N.A.H. & Chorus, C.G., 2021. "The long road to automated trucking: Insights from driver focus groups," ERIM Report Series Research in Management ERS-2021-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
More about this item
Keywords
Connected automated vehicles; Longitudinal control; Distributed model predictive control; Local stability; l∞-norm string stability; l2-norm string stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:128:y:2019:i:c:p:69-86. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.