IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v172y2023icp199-216.html
   My bibliography  Save this article

Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis

Author

Listed:
  • Zhang, Hanyu
  • Du, Lili

Abstract

Extensive studies developed eco-driving strategies to smooth traffic and reduce energy consumption and emission at signalized intersections. Part I (Zhang and Du, 2022) of this study developed a novel platoon-centered control for eco-driving (PCC-eDriving), considering a mixed flow involving Connected and Autonomous Vehicles (CAVs) and Human-Driven Vehicles (HDVs). This PCC-eDriving is mathematically implemented by a hybrid Model Predictive Control (MPC) system and solved by an active-set based optimal condition decomposition algorithm (AS-OCD). It generates discrete control laws for a platoon to approach, split as sub-platoons as needed, and then pass the intersections smoothly and efficiently. Though the numerical experiments validated the effectiveness, the theoretical properties of the hybrid MPC system and the solution algorithms were not investigated. Part II of this study thus focused on these theoretical analyses. Mainly, we first analyzed and proved the MPC sequential feasibility and hybrid system switching feasibility to guarantee the control continuity of the hybrid MPC system. Next, we factored CAV control uncertainties and proved the Input-to-state stability of the robust MPC controller. These proofs theoretically ensured the effectiveness and robustness of the hybrid MPC system. Last, we proved the solution optimality and convergence of the AS-OCD algorithm. It confirmed that the AS-OCD algorithm could find the global optimal solutions for the MPC optimizers with a linear convergence rate.

Suggested Citation

  • Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 199-216.
  • Handle: RePEc:eee:transb:v:172:y:2023:i:c:p:199-216
    DOI: 10.1016/j.trb.2023.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
    2. Ma, Jiaqi & Li, Xiaopeng & Zhou, Fang & Hu, Jia & Park, B. Brian, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 421-441.
    3. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    4. Gong, Siyuan & Shen, Jinglai & Du, Lili, 2016. "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 314-334.
    5. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    6. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    7. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qingling & Xu, Xiaowen, 2024. "A platoon-based eco-driving control mechanism for low-density traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    2. Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
    3. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part I: Modeling and solution algorithm design," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 174-198.
    4. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    5. Liu, Chunyu & Sheng, Zihao & Chen, Sikai & Shi, Haotian & Ran, Bin, 2023. "Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    6. Zhao, Shuaidong & Zhang, Kuilin, 2020. "A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditi," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 144-178.
    7. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    8. Qiu, Jiahua & Du, Lili, 2023. "Cooperative trajectory control for synchronizing the movement of two connected and autonomous vehicles separated in a mixed traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    9. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    10. Wu, Fuliang & Bektaş, Tolga & Dong, Ming & Ye, Hongbo & Zhang, Dali, 2021. "Optimal driving for vehicle fuel economy under traffic speed uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 175-206.
    11. Chen Wang & Yulu Dai & Jingxin Xia, 2020. "A CAV Platoon Control Method for Isolated Intersections: Guaranteed Feasible Multi-Objective Approach with Priority," Energies, MDPI, vol. 13(3), pages 1-16, February.
    12. Zhou, Yang & Zhong, Xinzhi & Chen, Qian & Ahn, Soyoung & Jiang, Jiwan & Jafarsalehi, Ghazaleh, 2023. "Data-driven analysis for disturbance amplification in car-following behavior of automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    13. Li, Xiaopeng & Ghiasi, Amir & Xu, Zhigang & Qu, Xiaobo, 2018. "A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 429-456.
    14. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    15. Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
    16. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    17. Zhang, Hanyu & Du, Lili & Shen, Jinglai, 2022. "Hybrid MPC System for Platoon based Cooperative Lane change Control Using Machine Learning Aided Distributed Optimization," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 104-142.
    18. Xiao Xiao & Yunlong Zhang & Xiubin Bruce Wang & Shu Yang & Tianyi Chen, 2021. "Hierarchical Longitudinal Control for Connected and Automated Vehicles in Mixed Traffic on a Signalized Arterial," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    19. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    20. Anton Agafonov & Alexander Yumaganov & Vladislav Myasnikov, 2023. "Cooperative Control for Signalized Intersections in Intelligent Connected Vehicle Environments," Mathematics, MDPI, vol. 11(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:172:y:2023:i:c:p:199-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.