IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v158y2022icp239-272.html
   My bibliography  Save this article

Passenger-oriented traffic control for rail networks: An optimization model considering crowding effects on passenger choices and train operations

Author

Listed:
  • Luan, Xiaojie
  • Corman, Francesco

Abstract

In public transport, e.g., railways, crowding is of major influence on passenger satisfaction and also on system performance. We study the passenger-oriented traffic control problem by means of integrated optimization, particularly considering the crowding effects on passenger route choices and on train traffic. The goal is to find the system optimum solution by adapting train schedules and rerouting passengers. A mixed-integer nonlinear programming (MINLP) model is proposed, identifying the train orders and departure and arrival times, as well as finding the best route for passengers, with the objective of minimizing passenger disutility and train delay. In the model, we allow free splits of the passengers in a group onto different routes and reasonable passenger transfers between trains. We value train crowding by using time multiplier, which is defined as a piecewise constant function of the train crowding ratio (also called load factor), indicating that passengers perceive a longer travel time on a more crowded train. Moreover, we assume variations of the minimum train dwell time, caused by the alighting and boarding passengers. The nonlinear terms in the MINLP model are linearized by using an exact reformulation method and three transformation properties, resulting in an equivalent mixed-integer linear programming (MILP) model. In the experiences, we adopt a real-world railway network, i.e., the urban railway network in Zürich city, to examine the proposed approach. The results demonstrate the effectiveness of the model. The results show that, by considering the crowding effects, some passengers are forced to choose the routes that are less crowded but have larger travel/delay times, which leads to the improved passenger comfort and makes the planned train timetable less affected (in terms of delays). We also find that flexibility in train schedules brings more possibilities to serve better the passengers. Moreover, it is observed that if the train dwell time is highly sensitive to the alighting and boarding passengers, then the transport network will become vulnerable and less reliable, which should be avoided in real operations.

Suggested Citation

  • Luan, Xiaojie & Corman, Francesco, 2022. "Passenger-oriented traffic control for rail networks: An optimization model considering crowding effects on passenger choices and train operations," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 239-272.
  • Handle: RePEc:eee:transb:v:158:y:2022:i:c:p:239-272
    DOI: 10.1016/j.trb.2022.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522000273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takayama, Yuki, 2015. "Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 830-847.
    2. Kim, Kyung Min & Hong, Sung-Pil & Ko, Suk-Joon & Kim, Dowon, 2015. "Does crowding affect the path choice of metro passengers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 292-304.
    3. Twan Dollevoet & Dennis Huisman & Marie Schmidt & Anita Schöbel, 2012. "Delay Management with Rerouting of Passengers," Transportation Science, INFORMS, vol. 46(1), pages 74-89, February.
    4. Cox, Tom & Houdmont, Jonathan & Griffiths, Amanda, 2006. "Rail passenger crowding, stress, health and safety in Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 244-258, March.
    5. Haywood, Luke & Koning, Martin & Monchambert, Guillaume, 2017. "Crowding in public transport: Who cares and why?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 215-227.
    6. Yizhou Zhang & Erik Jenelius & Karl Kottenhoff, 2017. "Impact of real-time crowding information: a Stockholm metro pilot study," Public Transport, Springer, vol. 9(3), pages 483-499, October.
    7. Cats, Oded & West, Jens & Eliasson, Jonas, 2016. "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 43-57.
    8. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    9. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    10. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    11. Leo Kroon & Gábor Maróti & Lars Nielsen, 2015. "Rescheduling of Railway Rolling Stock with Dynamic Passenger Flows," Transportation Science, INFORMS, vol. 49(2), pages 165-184, May.
    12. Zhou, Li & Yang, Xin & Wang, Huan & Wu, Jianjun & Chen, Lei & Yin, Haodong & Qu, Yunchao, 2020. "A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    13. de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
    14. Yung-Hsiang Cheng, 2010. "Exploring passenger anxiety associated with train travel," Transportation, Springer, vol. 37(6), pages 875-896, November.
    15. Michael Schachtebeck & Anita Schöbel, 2010. "To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions," Transportation Science, INFORMS, vol. 44(3), pages 307-321, August.
    16. Zhou, Yu & Yang, Hai & Wang, Yun & Yan, Xuedong, 2021. "Integrated line configuration and frequency determination with passenger path assignment in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 134-151.
    17. Andreas Ginkel & Anita Schöbel, 2007. "To Wait or Not to Wait? The Bicriteria Delay Management Problem in Public Transportation," Transportation Science, INFORMS, vol. 41(4), pages 527-538, November.
    18. Dilay Çelebi & Şükrü İmre, 2020. "Measuring crowding-related comfort in public transport," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(7), pages 735-750, October.
    19. Li, Zheng & Hensher, David A., 2011. "Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal," Transport Policy, Elsevier, vol. 18(6), pages 880-887, November.
    20. Tang, Yili & Jiang, Yu & Yang, Hai & Nielsen, Otto Anker, 2020. "Modeling and optimizing a fare incentive strategy to manage queuing and crowding in mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 247-267.
    21. Evelien van der Hurk & Leo Kroon & Gábor Maróti, 2018. "Passenger Advice and Rolling Stock Rescheduling Under Uncertainty for Disruption Management," Service Science, INFORMS, vol. 52(6), pages 1391-1411, December.
    22. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    23. Zhou, Yu & Wang, Yun & Yang, Hai & Yan, Xuedong, 2019. "Last train scheduling for maximizing passenger destination reachability in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 79-95.
    24. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    25. Ruben A. Kuipers & Carl-William Palmqvist & Nils O.E. Olsson & Lena Winslott Hiselius, 2021. "The passenger’s influence on dwell times at station platforms: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 41(6), pages 721-741, November.
    26. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    27. Luan, Xiaojie & De Schutter, Bart & Meng, Lingyun & Corman, Francesco, 2020. "Decomposition and distributed optimization of real-time traffic management for large-scale railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 72-97.
    28. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    29. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    2. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    3. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    4. Liu, Xiaoyu & Dabiri, Azita & Xun, Jing & De Schutter, Bart, 2023. "Bi-level model predictive control for metro networks: Integration of timetables, passenger flows, and train speed profiles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    5. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. László Erdei & Péter Tamás & Béla Illés, 2023. "Improving the Efficiency of Rail Passenger Transportation Using an Innovative Operational Concept," Sustainability, MDPI, vol. 15(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs & Daziano, Ricardo A., 2017. "Estimation of crowding discomfort in public transport: Results from Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 311-326.
    2. Jenelius, Erik, 2018. "Public transport experienced service reliability: Integrating travel time and travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 275-291.
    3. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    4. Márquez, Luis & Alfonso A, Julieth V. & Poveda, Juan C., 2019. "In-vehicle crowding: Integrating tangible attributes, attitudes, and perceptions in a choice context between BRT and metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 452-465.
    5. Haywood, Luke & Koning, Martin & Prud'homme, Remy, 2018. "The economic cost of subway congestion: Estimates from Paris," Economics of Transportation, Elsevier, vol. 14(C), pages 1-8.
    6. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    7. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    8. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
    9. Junya Kumagai & Mihoko Wakamatsu & Shunsuke Managi, 2021. "Do commuters adapt to in-vehicle crowding on trains?," Transportation, Springer, vol. 48(5), pages 2357-2399, October.
    10. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    11. Haywood, Luke & Koning, Martin & Monchambert, Guillaume, 2017. "Crowding in public transport: Who cares and why?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 215-227.
    12. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Chen, Xin & Jiang, Yu & Bláfoss Ingvardson, Jesper & Luo, Xia & Anker Nielsen, Otto, 2023. "I can board, but I’d rather wait: Active boarding delay choice behaviour analysis using smart card data in metro systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    14. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    15. Kapatsila, Bogdan & Bahamonde-Birke, Francisco J. & van Lierop, Dea & Grisé, Emily, 2023. "Impact of the COVID-19 pandemic on the comfort of riding a crowded bus in Metro Vancouver, Canada," Transport Policy, Elsevier, vol. 141(C), pages 83-96.
    16. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.
    17. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).
    18. Wang, Bin & Zacharias, John, 2020. "Noise, odor and passenger density in perceived crowding in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 215-223.
    19. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    20. Liudan Jiao & Liyin Shen & Chenyang Shuai & Yongtao Tan & Bei He, 2017. "Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study," Sustainability, MDPI, vol. 9(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:158:y:2022:i:c:p:239-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.