IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v558y2020ics0378437120304799.html
   My bibliography  Save this article

A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems

Author

Listed:
  • Zhou, Li
  • Yang, Xin
  • Wang, Huan
  • Wu, Jianjun
  • Chen, Lei
  • Yin, Haodong
  • Qu, Yunchao

Abstract

Timetable optimization in metro systems has been an active research topic for a long time. Traditional studies often ignore some uncertainties of passenger characteristics to simplify the model formulation and solution algorithm. In this paper, we present a robust optimization approach for the timetable optimization problem with consideration of the uncertainties of passenger arrival times and alighting passenger number for each station. Firstly, the uncertain properties of passengers are analyzed, and the scenarios are designed to reveal the impact of the uncertainties. Secondly, a robust optimization model with two phases is developed: the first phase is to obtain the minimum number of waiting passengers for each scenario, and the second phase is to decide on a robust solution with the minimax regret value. Furthermore, two heuristic algorithms are designed to search the robust optimal solutions. Finally, a practical example is presented based on the real-life operation data from the Beijing Metro Yizhuang Line. The results on the basis of 20 new scenarios show that the relative regret value of the robust timetable is less than 15%, which illustrates that the obtained timetable is strongly robust.

Suggested Citation

  • Zhou, Li & Yang, Xin & Wang, Huan & Wu, Jianjun & Chen, Lei & Yin, Haodong & Qu, Yunchao, 2020. "A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
  • Handle: RePEc:eee:phsmap:v:558:y:2020:i:c:s0378437120304799
    DOI: 10.1016/j.physa.2020.124927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304799
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Ze-Rui & Zang, Li-Lin & Zhu, Wen-Xing, 2020. "Study on minimum emission control strategy on arterial road based on improved simulated annealing genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Sun, Xiuqiao & Wang, Jian, 2018. "Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 205-216.
    3. Xiao, Xue-mei & Jia, Li-min & Wang, Yan-hui, 2017. "Dynamics of subway networks based on vehicles operation timetable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 111-121.
    4. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.
    5. Ayvaz-Cavdaroglu, Nur & Kachani, Soulaymane & Maglaras, Costis, 2016. "Revenue management with minimax regret negotiations," Omega, Elsevier, vol. 63(C), pages 12-22.
    6. Lonzius, Marc Christopher & Lange, Anne, 2017. "Robust Scheduling: An Empirical Study of Its Impact on Air Traffic Delays," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 84640, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    8. Yelin Fu & Jianshan Sun & K. Lai & John Leung, 2015. "A robust optimization solution to bottleneck generalized assignment problem under uncertainty," Annals of Operations Research, Springer, vol. 233(1), pages 123-133, October.
    9. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    10. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    11. Masoud Shakibayifar & Erfan Hassannayebi & Hossein Jafary & Arman Sajedinejad, 2017. "Stochastic optimization of an urban rail timetable under time‐dependent and uncertain demand," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(6), pages 640-661, November.
    12. Li, Xiang & Lo, Hong K., 2014. "An energy-efficient scheduling and speed control approach for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 73-89.
    13. Li, Xiang & Lo, Hong K., 2014. "Energy minimization in dynamic train scheduling and control for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 269-284.
    14. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    15. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    16. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
    17. Chen, Lu & Gendreau, Michel & Hà, Minh Hoàng & Langevin, André, 2016. "A robust optimization approach for the road network daily maintenance routing problem with uncertain service time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 40-51.
    18. Lonzius, Marc Christopher & Lange, Anne, 2017. "Robust Scheduling: An Empirical Study of Its Impact on Air Traffic Delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 98-114.
    19. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2017. "Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 22-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenliang Zhou & Jing Kang & Jin Qin & Sha Li & Yu Huang, 2022. "Robust Optimization of High-Speed Railway Train Plan Based on Multiple Demand Scenarios," Mathematics, MDPI, vol. 10(8), pages 1-26, April.
    2. Luan, Xiaojie & Corman, Francesco, 2022. "Passenger-oriented traffic control for rail networks: An optimization model considering crowding effects on passenger choices and train operations," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 239-272.
    3. Nejlaoui, Mohamed & Alghafis, Abdullah & Sadig, Hussain, 2022. "Six sigma robust multi-objective design optimization of flat plate collector system under uncertain design parameters," Energy, Elsevier, vol. 239(PA).
    4. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Yang, Hongtai & Ping, An & Wei, Hongmin & Zhai, Guocong, 2023. "Unique in the metro system: The likelihood to re-identify a metro user with limited trajectory points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    6. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
    2. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    3. Ying, Cheng-shuo & Chow, Andy H.F. & Chin, Kwai-Sang, 2020. "An actor-critic deep reinforcement learning approach for metro train scheduling with rolling stock circulation under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 210-235.
    4. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    5. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2021. "Risk of delay evaluation in real-time train scheduling with uncertain dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Jianqiang Liu & Nan Zhao, 2017. "Research on Energy-Saving Operation Strategy for Multiple Trains on the Urban Subway Line," Energies, MDPI, vol. 10(12), pages 1-19, December.
    7. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    8. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    9. Li, Wenxin & Peng, Qiyuan & Wen, Chao & Wang, Pengling & Lessan, Javad & Xu, Xinyue, 2020. "Joint optimization of delay-recovery and energy-saving in a metro system: A case study from China," Energy, Elsevier, vol. 202(C).
    10. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    11. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2017. "Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 22-37.
    12. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    13. Yin, Jiateng & Tang, Tao & Yang, Lixing & Gao, Ziyou & Ran, Bin, 2016. "Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 178-210.
    14. Polinder, Gert-Jaap & Breugem, Thomas & Dollevoet, Twan & Maróti, Gábor, 2019. "An adjustable robust optimization approach for periodic timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 50-68.
    15. Zhaoxiang Tan & Shaofeng Lu & Kai Bao & Shaoning Zhang & Chaoxian Wu & Jie Yang & Fei Xue, 2018. "Adaptive Partial Train Speed Trajectory Optimization," Energies, MDPI, vol. 11(12), pages 1-33, November.
    16. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    17. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.
    18. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    19. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    20. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:558:y:2020:i:c:s0378437120304799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.