IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v77y2015icp292-304.html
   My bibliography  Save this article

Does crowding affect the path choice of metro passengers?

Author

Listed:
  • Kim, Kyung Min
  • Hong, Sung-Pil
  • Ko, Suk-Joon
  • Kim, Dowon

Abstract

This paper investigates crowding effect on the path choice of metro passengers. We show people reroute not only to avoid the delay from crowding but also to evade crowding itself. More specifically, a logit model fits best when it uses the transit delay from crowding as well as the passenger load of a connection in addition to the conventional explanatory variables. Also, we demonstrate that crowding decreases the overall welfare of metro passengers. The model is tested on the real path choice data acquired by the recent algorithm by Hong et al. (2015) known to detect the real path choice from Smart Card data in more than 90% of the cases.

Suggested Citation

  • Kim, Kyung Min & Hong, Sung-Pil & Ko, Suk-Joon & Kim, Dowon, 2015. "Does crowding affect the path choice of metro passengers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 292-304.
  • Handle: RePEc:eee:transa:v:77:y:2015:i:c:p:292-304
    DOI: 10.1016/j.tra.2015.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415001093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John H. J. Einmahl & Sander G. W. R. Smeets, 2011. "Ultimate 100‐m world records through extreme‐value theory," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 32-42, February.
    2. Mandel, Benedikt & Gaudry, Marc & Rothengatter, Werner, 1994. "Linear or nonlinear utility functions in logit models? The impact on German high-speed rail demand forecasts," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 91-101, April.
    3. Li, Zheng & Hensher, David A., 2011. "Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal," Transport Policy, Elsevier, vol. 18(6), pages 880-887, November.
    4. Raveau, Sebastián & Muñoz, Juan Carlos & de Grange, Louis, 2011. "A topological route choice model for metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 138-147, February.
    5. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    6. Hironori Kato & Yuichiro Kaneko & Masashi Inoue, 2010. "Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo Metropolitan Area," Transportation, Springer, vol. 37(5), pages 775-799, September.
    7. Guo, Zhan & Wilson, Nigel H.M., 2011. "Assessing the cost of transfer inconvenience in public transport systems: A case study of the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 91-104, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    2. Allard, Ryan F. & Moura, Filipe, 2018. "Effect of transport transfer quality on intercity passenger mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 89-107.
    3. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    4. Matthieu Lapparent & Martin Koning, 2016. "Analyzing time sensitivity to discomfort in the Paris subway: an interval data model approach," Transportation, Springer, vol. 43(5), pages 913-933, September.
    5. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    6. Peer, Stefanie & Knockaert, Jasper & Verhoef, Erik T., 2016. "Train commuters’ scheduling preferences: Evidence from a large-scale peak avoidance experiment," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 314-333.
    7. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    8. Basu, Debasis & Hunt, John Douglas, 2012. "Valuing of attributes influencing the attractiveness of suburban train service in Mumbai city: A stated preference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1465-1476.
    9. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).
    10. Batarce, Marco & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2016. "Valuing crowding in public transport: Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 358-378.
    11. Guo, Ren-Yong & Szeto, W.Y. & Long, Jiancheng, 2020. "Trial-and-error operation schemes for bimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 106-123.
    12. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    13. de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
    14. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    15. Björklund, Gunilla & Swärdh, Jan-Erik, 2017. "Estimating policy values for in-vehicle comfort and crowding reduction in local public transport☆," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 453-472.
    16. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    17. Shelat, Sanmay & Cats, Oded & van Cranenburgh, Sander, 2022. "Traveller behaviour in public transport in the early stages of the COVID-19 pandemic in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 357-371.
    18. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    19. Prateek Bansal & Roselinde Kessels & Rico Krueger & Daniel J Graham, 2021. "Face masks, vaccination rates and low crowding drive the demand for the London Underground during the COVID-19 pandemic," Papers 2107.02394, arXiv.org.
    20. Guevara, C. Angelo & Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs, 2020. "Correcting for endogeneity due to omitted crowding in public transport choice using the Multiple Indicator Solution (MIS) method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 472-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:77:y:2015:i:c:p:292-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.