IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i9p1450-1464.html
   My bibliography  Save this article

Dynamic ride-sharing: A simulation study in metro Atlanta

Author

Listed:
  • Agatz, Niels A.H.
  • Erera, Alan L.
  • Savelsbergh, Martin W.P.
  • Wang, Xing

Abstract

Smartphone technology enables dynamic ride-sharing systems that bring together people with similar itineraries and time schedules to share rides on short-notice. This paper considers the problem of matching drivers and riders in this dynamic setting. We develop optimization-based approaches that aim at minimizing the total system-wide vehicle miles incurred by system users, and their individual travel costs. To assess the merits of our methods we present a simulation study based on 2008 travel demand data from metropolitan Atlanta. The simulation results indicate that the use of sophisticated optimization methods instead of simple greedy matching rules substantially improve the performance of ride-sharing systems. Furthermore, even with relatively low participation rates, it appears that sustainable populations of dynamic ride-sharing participants may be possible even in relatively sprawling urban areas with many employment centers.

Suggested Citation

  • Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:9:p:1450-1464
    DOI: 10.1016/j.trb.2011.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511000671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2011.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    2. Vijay Mahajan & Eitan Muller & Frank M. Bass, 1995. "Diffusion of New Products: Empirical Generalizations and Managerial Uses," Marketing Science, INFORMS, vol. 14(3_supplem), pages 79-88.
    3. Tsao, H.-S. Jacob & Lin, Da-Jie, 1999. "Spatial and Temporal Factors in Estimating the Potential of Ride-sharing for Demand Reduction," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2p57q0c9, Institute of Transportation Studies, UC Berkeley.
    4. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "Sustainable Passenger Transportation: Dynamic Ride-Sharing," ERIM Report Series Research in Management ERS-2010-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "The Value of Optimization in Dynamic Ride-Sharing: a Simulation Study in Metro Atlanta," ERIM Report Series Research in Management ERS-2010-034-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    3. Kivi, Antero & Smura, Timo & Töyli, Juuso, 2012. "Technology product evolution and the diffusion of new product features," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 107-126.
    4. Tolotti, Marco & Yepez, Jorge, 2020. "Hotelling-Bertrand duopoly competition under firm-specific network effects," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 105-128.
    5. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    6. Ted Klastorin & Weiyu Tsai, 2004. "New Product Introduction: Timing, Design, and Pricing," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 302-320, August.
    7. Gadi Fibich & Ro'i Gibori, 2010. "Aggregate Diffusion Dynamics in Agent-Based Models with a Spatial Structure," Operations Research, INFORMS, vol. 58(5), pages 1450-1468, October.
    8. Wang, Juite & Lai, Jung-Yu & Chang, Chih-Hsin, 2016. "Modeling and analysis for mobile application services: The perspective of mobile network operators," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 146-163.
    9. MacCoun, Robert J., 2015. "Balancing evidence and norms in cultural evolution," Organizational Behavior and Human Decision Processes, Elsevier, vol. 129(C), pages 93-104.
    10. Alan L. Montgomery, 2001. "Applying Quantitative Marketing Techniques to the Internet," Interfaces, INFORMS, vol. 31(2), pages 90-108, April.
    11. Steven M. Shugan, 2002. "Editorial: Marketing Science, Models, Monopoly Models, and Why We Need Them," Marketing Science, INFORMS, vol. 21(3), pages 223-228.
    12. Oren Bahat & Shlomo Bekhor, 2016. "Incorporating Ridesharing in the Static Traffic Assignment Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 1125-1149, December.
    13. Wendy W. Moe & Peter S. Fader, 2002. "Fast-Track: Article Using Advance Purchase Orders to Forecast New Product Sales," Marketing Science, INFORMS, vol. 21(3), pages 347-364, March.
    14. Bing Jing, 2011. "Social Learning and Dynamic Pricing of Durable Goods," Marketing Science, INFORMS, vol. 30(5), pages 851-865, September.
    15. Jacob Grazzini & Matteo Richiardi & Lisa Sella, 2012. "Indirect estimation of agent-based models.An application to a simple diffusion model," LABORatorio R. Revelli Working Papers Series 118, LABORatorio R. Revelli, Centre for Employment Studies.
    16. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    17. Arkadiusz Kijek & Tomasz Kijek, 2010. "Modelling of innovation diffusion," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(3-4), pages 53-68.
    18. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    19. Hohnisch, Martin & Pittnauer, Sabine & Stauffer, Dietrich, 2006. "A Percolation-Based Model Explaining Delayed Take-Off in New-Product Diffusion," Bonn Econ Discussion Papers 9/2006, University of Bonn, Bonn Graduate School of Economics (BGSE).
    20. Hong, Jungsik & Koo, Hoonyoung & Kim, Taegu, 2016. "Easy, reliable method for mid-term demand forecasting based on the Bass model: A hybrid approach of NLS and OLS," European Journal of Operational Research, Elsevier, vol. 248(2), pages 681-690.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:9:p:1450-1464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.