IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i9p1450-1464.html
   My bibliography  Save this article

Dynamic ride-sharing: A simulation study in metro Atlanta

Author

Listed:
  • Agatz, Niels A.H.
  • Erera, Alan L.
  • Savelsbergh, Martin W.P.
  • Wang, Xing

Abstract

Smartphone technology enables dynamic ride-sharing systems that bring together people with similar itineraries and time schedules to share rides on short-notice. This paper considers the problem of matching drivers and riders in this dynamic setting. We develop optimization-based approaches that aim at minimizing the total system-wide vehicle miles incurred by system users, and their individual travel costs. To assess the merits of our methods we present a simulation study based on 2008 travel demand data from metropolitan Atlanta. The simulation results indicate that the use of sophisticated optimization methods instead of simple greedy matching rules substantially improve the performance of ride-sharing systems. Furthermore, even with relatively low participation rates, it appears that sustainable populations of dynamic ride-sharing participants may be possible even in relatively sprawling urban areas with many employment centers.

Suggested Citation

  • Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:9:p:1450-1464
    DOI: 10.1016/j.trb.2011.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511000671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2011.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    2. Tsao, H.-S. Jacob & Lin, Da-Jie, 1999. "Spatial and Temporal Factors in Estimating the Potential of Ride-sharing for Demand Reduction," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2p57q0c9, Institute of Transportation Studies, UC Berkeley.
    3. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "Sustainable Passenger Transportation: Dynamic Ride-Sharing," ERIM Report Series Research in Management ERS-2010-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Vijay Mahajan & Eitan Muller & Frank M. Bass, 1995. "Diffusion of New Products: Empirical Generalizations and Managerial Uses," Marketing Science, INFORMS, vol. 14(3_supplem), pages 79-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "The Value of Optimization in Dynamic Ride-Sharing: a Simulation Study in Metro Atlanta," ERIM Report Series Research in Management ERS-2010-034-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    3. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    4. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    5. Kivi, Antero & Smura, Timo & Töyli, Juuso, 2012. "Technology product evolution and the diffusion of new product features," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 107-126.
    6. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    7. Rixen, Martin & Weigand, Jürgen, 2014. "Agent-based simulation of policy induced diffusion of smart meters," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 153-167.
    8. Tolotti, Marco & Yepez, Jorge, 2020. "Hotelling-Bertrand duopoly competition under firm-specific network effects," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 105-128.
    9. Mihir Dash & Anuloma Tripathy & D. Shobha & Greeshma Ramesh & Abhiyank Verma & K. Sriharsha, 2016. "Comparison of Diffusion in Telecommunications in the BRICS Economies," Journal of Applied Management and Investments, Department of Business Administration and Corporate Security, International Humanitarian University, vol. 5(4), pages 229-235, November.
    10. Martin Hewing, 2012. "A Theoretical and Empirical Comparison of Innovation Diffusion Models Applying Data from the Software Industry," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 3(2), pages 125-141, June.
    11. Hiroshi Kitamura, 2010. "Capacity Expansion In Markets With Inter‐Temporal Consumption Externalities," Australian Economic Papers, Wiley Blackwell, vol. 49(2), pages 127-148, June.
    12. Huang, Jian & Leng, Mingming & Liang, Liping, 2012. "Recent developments in dynamic advertising research," European Journal of Operational Research, Elsevier, vol. 220(3), pages 591-609.
    13. Shin, Jungwoo & Lee, Chul-Yong & Kim, Hongbum, 2016. "Technology and demand forecasting for carbon capture and storage technology in South Korea," Energy Policy, Elsevier, vol. 98(C), pages 1-11.
    14. Ryo Iwata & Kaoru Kuramoto & Kenyuu Matsumoto & Satoshi Kumagai, 2020. "Extracting Innovative Buyers by Scoring Using Innovator Theory," International Review of Management and Marketing, Econjournals, vol. 10(5), pages 92-102.
    15. Soloviev, Vladimir, 2009. "Экономико-Математическое Моделирование Рынка Программного Обеспечения: Монография. — М.: Вега-Инфо, 2009. — 176 С [Economic and mathematical modelling of software market]," MPRA Paper 28974, University Library of Munich, Germany.
    16. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    17. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    18. Ted Klastorin & Weiyu Tsai, 2004. "New Product Introduction: Timing, Design, and Pricing," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 302-320, August.
    19. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    20. Wang, Wenyuan & Wang, Yue & Mo, Daniel & Tseng, Mitchell M., 2017. "Managing component reuse in remanufacturing under product diffusion dynamics," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 551-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:9:p:1450-1464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.