IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8078-d1478921.html
   My bibliography  Save this article

Dynamic Multi-Function Lane Management for Connected and Automated Vehicles Considering Bus Priority

Author

Listed:
  • Zhen Zhang

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Lingfei Rong

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Zhiquan Xie

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Xiaoguang Yang

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

Abstract

Bus lanes are commonly implemented to ensure absolute priority for buses at signalized intersections. However, while prioritizing buses, existing bus lane management strategies often exacerbate traffic demand imbalances among lanes. To address this issue, this paper proposes a dynamic Multi-Function Lane (MFL) management strategy. The proposed strategy transforms traditional bus lanes into Multi-Function Lanes (MFLs) that permit access to Connected and Automated Vehicles (CAVs). By fully utilizing the idle right-of-way of the MFL, the proposed strategy can achieve traffic efficiency improvement. To evaluate the proposed strategy, some experiments are conducted under various demand levels and CAV penetration rates. The results reveal that the proposed strategy (i) improves the traffic intensity balance degree by up to 52.9 under high demand levels; (ii) reduces delay by up to 80.56% and stops by up to 89.35% with the increase in demand level and CAV penetration rate; (iii) guarantees absolute bus priority under various demand levels and CAV penetration rates. The proposed strategy performs well even when CAV penetration is low. This indicates that the proposed strategy has the potential for real-world application.

Suggested Citation

  • Zhen Zhang & Lingfei Rong & Zhiquan Xie & Xiaoguang Yang, 2024. "Dynamic Multi-Function Lane Management for Connected and Automated Vehicles Considering Bus Priority," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8078-:d:1478921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Chiabaut & Anais Barcet, 2019. "Demonstration and evaluation of an intermittent bus lane strategy," Public Transport, Springer, vol. 11(3), pages 443-456, October.
    2. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    3. Fayed, Lynn & Nilsson, Gustav & Geroliminis, Nikolas, 2023. "On the utilization of dedicated bus lanes for pooled ride-hailing services," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 29-52.
    4. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    5. Guorong Zheng & Mingyan Zhang & Lei Liu, 2022. "Research on the Cooperative Control Method of Intermittent Bus Lane and Downstream Intersection," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-7, January.
    6. Murat Bayrak & S. Ilgin Guler, 2021. "Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics," Public Transport, Springer, vol. 13(2), pages 325-347, June.
    7. Anderson, Paul & Daganzo, Carlos F., 2020. "Effect of transit signal priority on bus service reliability," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 2-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Hu & Zhexi Lian & Xiaoxue Sun & Arno Eichberger & Zhen Zhang & Jintao Lai, 2024. "Dynamic Right-of-Way Allocation on Bus Priority Lanes Considering Traffic System Resilience," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    2. Yuriy Royko & Yevhen Fornalchyk & Eugeniusz Koda & Ivan Kernytskyy & Oleh Hrytsun & Romana Bura & Piotr Osinski & Anna Markiewicz & Tomasz Wierzbicki & Ruslan Barabash & Ruslan Humenuyk & Pavlo Polyan, 2023. "Public Transport Prioritization and Descriptive Criteria-Based Urban Sections Classification on Arterial Streets," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    3. Victoria Gitelman & Anna Korchatov & Wafa Elias, 2020. "An Examination of the Safety Impacts of Bus Priority Routes in Major Israeli Cities," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    4. Takao Dantsuji & Daisuke Fukuda & Nan Zheng, 2021. "Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: a macroscopic approach," Transportation, Springer, vol. 48(2), pages 673-697, April.
    5. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    6. Zhang, Guozheng & Wang, Dianhai & Cai, Zhengyi & Zeng, Jiaqi, 2024. "Competitiveness of public transit considering travel time reliability: A case study for commuter trips in Hangzhou, China," Journal of Transport Geography, Elsevier, vol. 114(C).
    7. Wufeng Qiao & Zepeng Yang & Bo Peng & Xiaoyu Cai & Yuanyuan Zhang, 2024. "Integrated Evaluation Method of Bus Lane Traffic Benefit Based on Multi-Source Data," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    8. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    9. Mateusz Szarata & Piotr Olszewski & Lesław Bichajło, 2021. "Simulation Study of Dynamic Bus Lane Concept," Sustainability, MDPI, vol. 13(3), pages 1-15, January.
    10. Jingwei Wang & Yin Han & Peng Li, 2022. "Integrated Robust Optimization of Scheduling and Signal Timing for Bus Rapid Transit," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    11. Ambróz HÁJNIK & Veronika HARANTOVÁ & Alica KALAŠOVÁ & Kristián ČULÍK, 2021. "Traffic Modeling Of Intersections On Vajnorska Street In Bratislava," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 29-40, September.
    12. Qingyu Luo & Rui Du & Hongfei Jia & Lili Yang, 2022. "Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    13. Usman Ghumman & Hamid Jabbar & Mohsin Islam Tiwana & Ihsan Ullah Khalil & Faraz Kunwar, 2022. "A novel approach of overtaking maneuvering using modified RG method," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    14. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    15. Murat Bayrak & S. Ilgin Guler, 2021. "Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics," Public Transport, Springer, vol. 13(2), pages 325-347, June.
    16. Miriam Rocha & Cristina Albuquerque Moreira Silva & Reinaldo Germano Santos Junior & Michel Anzanello & Gabrielli Harumi Yamashita & Luis Antonio Lindau, 2020. "Selecting the most relevant variables towards clustering bus priority corridors," Public Transport, Springer, vol. 12(3), pages 587-609, October.
    17. Yunqiang Xue & Lin Cheng & Meng Zhong & Xiaokang Sun, 2023. "Evaluation of Bus Lane Layouts Based on a Bi-Level Programming Model—Using Part of the Qingshan Lake District of Nanchang City, China, as an Example," Sustainability, MDPI, vol. 15(11), pages 1-13, May.
    18. Mohammed Alkahtani & Mustufa Haider Abidi & Hamoud S. Bin Obaid & Osama Alotaik, 2023. "Modified Gannet Optimization Algorithm for Reducing System Operation Cost in Engine Parts Industry with Pooling Management and Transport Optimization," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    19. Wang, Zhimian & An, Kun & Correia, Gonçalo & Ma, Wanjing, 2024. "Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    20. Johari, Mansour & Keyvan-Ekbatani, Mehdi, 2024. "Macroscopic modeling of mixed bi-modal urban networks: A hybrid model of accumulation- and trip-based principles," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8078-:d:1478921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.