IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v126y2019icp280-306.html
   My bibliography  Save this article

Multiple model stochastic filtering for traffic density estimation on urban arterials

Author

Listed:
  • Panda, Manoj
  • Ngoduy, Dong
  • Vu, Hai L.

Abstract

Traffic state estimation plays an important role in Intelligent Transportation Systems (ITS). It provides the latest traffic information to travelers and feedback to signal control systems. The Interactive Multiple Model (IMM) filtering provides a powerful estimation method to deal with the non-differentiable nonlinearity caused by the phase transitions between the under-critical and above-critical traffic density regimes. The IMM filtering also accounts for the uncertainty in the current ‘mode of operation’. In this paper, we develop an enhanced IMM filtering approach to traffic state estimation, with an underlying Cell Transmission Model (CTM) for traffic flow propagation. We improve the IMM filtering with CTM in two ways: (1) We apply two simplifying assumptions that are highly likely to hold in urban roads in incident-free conditions, which makes the computational complexity to grow with the number of cells only polynomially, rather than exponentially as reported in prior work. (2) We apply a novel approach to noise modeling wherein the process noise is explicitly obtained in terms of the randomness in more fundamental quantities (e.g., free-flow speed, maximum flow capacity, etc.), which not only makes noise calibration using real data convenient but also makes the computation of the cross-correlation between the process and measurement noises transparent. However, it leads to ‘process dynamic’ and ‘measurement’ equations that involve multiplier matrices whose elements are random variables rather than deterministic scalars, and hence, standard filtering equations cannot be applied. We derive the appropriate filtering equations from first principles. We calibrate the traffic parameters and the total inflow and outflow on the links using the SCATS loop detector data collected in Melbourne and report significant improvements in accuracy, which is due to the accurate computation of the cross-covariance of process and measurement noises.

Suggested Citation

  • Panda, Manoj & Ngoduy, Dong & Vu, Hai L., 2019. "Multiple model stochastic filtering for traffic density estimation on urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 280-306.
  • Handle: RePEc:eee:transb:v:126:y:2019:i:c:p:280-306
    DOI: 10.1016/j.trb.2019.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518308270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    2. Wright, Matthew A. & Gomes, Gabriel & Horowitz, Roberto & Kurzhanskiy, Alex A., 2017. "On node models for high-dimensional road networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 212-234.
    3. Simon Oh & Young-Ji Byon & Kitae Jang & Hwasoo Yeo, 2015. "Short-term Travel-time Prediction on Highway: A Review of the Data-driven Approach," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 4-32, January.
    4. Smits, Erik-Sander & Bliemer, Michiel C.J. & Pel, Adam J. & van Arem, Bart, 2015. "A family of macroscopic node models," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 20-39.
    5. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    6. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    7. Gazis, Denos & Liu, Chiu, 2003. "Kalman filtering estimation of traffic counts for two network links in tandem," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 737-745, September.
    8. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiawen & Zou, Linzhi & Zhao, Jing & Wang, Xinwei, 2024. "Dynamic capacity drop propagation in incident-affected networks: Traffic state modeling with SIS-CTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Guan, Xiangyang & Chen, Cynthia, 2021. "A behaviorally-integrated individual-level state-transition model that can predict rapid changes in evacuation demand days earlier," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    4. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    2. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    3. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    4. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    5. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    6. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    7. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    8. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    9. Jing Lu & Carolina Osorio, 2018. "A Probabilistic Traffic-Theoretic Network Loading Model Suitable for Large-Scale Network Analysis," Service Science, INFORMS, vol. 52(6), pages 1509-1530, December.
    10. Zheng, Zuduo & Su, Dongcai, 2016. "Traffic state estimation through compressed sensing and Markov random field," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 525-554.
    11. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    12. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    13. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    14. Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
    15. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    18. Pereira, Mike & Boyraz Baykas, Pinar & Kulcsár, Balázs & Lang, Annika, 2022. "Parameter and density estimation from real-world traffic data: A kinetic compartmental approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 210-239.
    19. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    20. Čičić, Mladen & Johansson, Karl Henrik, 2022. "Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 212-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:126:y:2019:i:c:p:280-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.