IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v35y2015i1p4-32.html
   My bibliography  Save this article

Short-term Travel-time Prediction on Highway: A Review of the Data-driven Approach

Author

Listed:
  • Simon Oh
  • Young-Ji Byon
  • Kitae Jang
  • Hwasoo Yeo

Abstract

Near future travel-time information is one of the most critical factors that travellers consider before making trip decisions. In efforts to provide more reliable future travel-time estimations, transportation engineers have examined various techniques developed in the last three decades. However, there have not been sufficiently systematic and through reviews so far. In order to effectively support various transportation strategies and applications including Intelligent Transportation Systems (ITS), it is necessary to apply appropriate forecasting methods for matching circumstances in a timely manner. This paper conducts a comprehensive review study focusing on literatures, including modern techniques proposed recently, related to travel time and traffic condition predictions that are based on 'data-driven' approaches. Based on the underlying mechanisms and theoretical principles, different approaches are categorized as parametric (linear regression and time series) and non-parametric approaches (artificial intelligence and pattern searching). Then, the approaches are analysed for their strengths, potential weaknesses, and performances from five main perspectives that are prediction range, accuracy, efficiency, applicability, and robustness.

Suggested Citation

  • Simon Oh & Young-Ji Byon & Kitae Jang & Hwasoo Yeo, 2015. "Short-term Travel-time Prediction on Highway: A Review of the Data-driven Approach," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 4-32, January.
  • Handle: RePEc:taf:transr:v:35:y:2015:i:1:p:4-32
    DOI: 10.1080/01441647.2014.992496
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2014.992496
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2014.992496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Purva Grover & Arpan Kumar Kar & Yogesh K. Dwivedi, 2022. "Understanding artificial intelligence adoption in operations management: insights from the review of academic literature and social media discussions," Annals of Operations Research, Springer, vol. 308(1), pages 177-213, January.
    2. Panda, Manoj & Ngoduy, Dong & Vu, Hai L., 2019. "Multiple model stochastic filtering for traffic density estimation on urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 280-306.
    3. Bo Qiu & Wei (David) Fan, 2021. "Machine Learning Based Short-Term Travel Time Prediction: Numerical Results and Comparative Analyses," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    4. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:35:y:2015:i:1:p:4-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.