IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v105y2017icp174-192.html
   My bibliography  Save this article

Dynamic equilibrium at a congestible facility under market power

Author

Listed:
  • Verhoef, Erik T.
  • Silva, Hugo E.

Abstract

This paper studies equilibrium and optimum at a congested facility when firms have market power; e.g., when a few airlines jointly use a congested airport. Unlike most of the previous literature, we characterize the equilibrium in terms of timing of arrivals in a continuous-time congestion model when firms simultaneously schedule services. Using the Henderson-Chu dynamic model of flow congestion in a multiple-firm setting, we find that a stable and unique Nash equilibrium in pure strategies always exists. Importantly, it also exists in cases where it fails to exist under bottleneck congestion (notably when the value of schedule late exceeds the value of travel delays). We find that symmetric firms schedule arrivals inefficiently, and strongly concentrated around the desired arrival time so that the peak is shorter and delays are higher than socially optimal. We show that when firms are asymmetric in terms of output, all firms schedule vehicles in the peak center, around the desired arrival time, with arrival windows increasing with firm size such that a smaller firm's window is always fully contained in a larger firm's window and only the largest firm operates in the early and late shoulders. Furthermore, for any pair of asymmetric firms, the larger firm has a higher instantaneous arrival rate at any moment where both firms schedule arrivals. Our results also show that even though self-internalization can be substantial, there is scope for decentralizing the first-best outcome through time-varying tolls.

Suggested Citation

  • Verhoef, Erik T. & Silva, Hugo E., 2017. "Dynamic equilibrium at a congestible facility under market power," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 174-192.
  • Handle: RePEc:eee:transb:v:105:y:2017:i:c:p:174-192
    DOI: 10.1016/j.trb.2017.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517302060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pels, Eric & Verhoef, Erik T., 2004. "The economics of airport congestion pricing," Journal of Urban Economics, Elsevier, vol. 55(2), pages 257-277, March.
    2. Czerny, Achim I. & Zhang, Anming, 2011. "Airport congestion pricing and passenger types," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 595-604, March.
    3. Brueckner, Jan K. & Van Dender, Kurt, 2008. "Atomistic congestion tolls at concentrated airports? Seeking a unified view in the internalization debate," Journal of Urban Economics, Elsevier, vol. 64(2), pages 288-295, September.
    4. Silva, Hugo E. & Verhoef, Erik T. & van den Berg, Vincent A.C., 2014. "Airlines’ strategic interactions and airport pricing in a dynamic bottleneck model of congestion," Journal of Urban Economics, Elsevier, vol. 80(C), pages 13-27.
    5. Henderson, J. Vernon, 1981. "The economics of staggered work hours," Journal of Urban Economics, Elsevier, vol. 9(3), pages 349-364, May.
    6. Silva, Hugo E. & Verhoef, Erik T., 2013. "Optimal pricing of flights and passengers at congested airports and the efficiency of atomistic charges," Journal of Public Economics, Elsevier, vol. 106(C), pages 1-13.
    7. Czerny, Achim I. & Zhang, Anming, 2014. "Airport peak-load pricing revisited: The case of peak and uniform tolls," Economics of Transportation, Elsevier, vol. 3(1), pages 90-101.
    8. Czerny, Achim I. & Zhang, Anming, 2014. "Airport congestion pricing when airlines price discriminate," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 77-89.
    9. Daniel, Joseph I, 1995. "Congestion Pricing and Capacity of Large Hub Airports: A Bottleneck Model with Stochastic Queues," Econometrica, Econometric Society, vol. 63(2), pages 327-370, March.
    10. Henderson, J. V., 1974. "Road congestion : A reconsideration of pricing theory," Journal of Urban Economics, Elsevier, vol. 1(3), pages 346-365, July.
    11. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    12. Brueckner, Jan K. & Verhoef, Erik T., 2010. "Manipulable congestion tolls," Journal of Urban Economics, Elsevier, vol. 67(3), pages 315-321, May.
    13. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    14. Basso, Leonardo J. & Zhang, Anming, 2007. "Congestible facility rivalry in vertical structures," Journal of Urban Economics, Elsevier, vol. 61(2), pages 218-237, March.
    15. Jan K. Brueckner, 2002. "Airport Congestion When Carriers Have Market Power," American Economic Review, American Economic Association, vol. 92(5), pages 1357-1375, December.
    16. Christopher Mayer & Todd Sinai, 2003. "Network Effects, Congestion Externalities, and Air Traffic Delays: Or Why Not All Delays Are Evil," American Economic Review, American Economic Association, vol. 93(4), pages 1194-1215, September.
    17. Verhoef, Erik T., 2020. "Optimal congestion pricing with diverging long-run and short-run scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 191-209.
    18. Leonardo J. Basso & Anming Zhang, 2008. "Sequential peak-load pricing: the case of airports and airlines," Canadian Journal of Economics, Canadian Economics Association, vol. 41(3), pages 1087-1119, August.
    19. Verhoef, Erik T., 2017. "Cost recovery of congested infrastructure under market power," Journal of Urban Economics, Elsevier, vol. 101(C), pages 45-56.
    20. Daniel, Joseph I. & Harback, Katherine Thomas, 2008. "(When) Do hub airlines internalize their self-imposed congestion delays?," Journal of Urban Economics, Elsevier, vol. 63(2), pages 583-612, March.
    21. B. G. Heydecker & J. D. Addison, 2005. "Analysis of Dynamic Traffic Equilibrium with Departure Time Choice," Transportation Science, INFORMS, vol. 39(1), pages 39-57, February.
    22. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    23. Hugo E. Silva & Erik T. Verhoef, 2011. "Optimal Pricing of Flights and Passengers at Congested Airports: The Efficiency of Atomistic Charges," Tinbergen Institute Discussion Papers 11-179/3, Tinbergen Institute, revised 28 Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boffa, Federico & Fedele, Alessandro & Iozzi, Alberto, 2023. "Congestion and incentives in the age of driverless fleets," Journal of Urban Economics, Elsevier, vol. 137(C).
    2. Lindsey, Robin & de Palma, André & Silva, Hugo E., 2019. "Equilibrium in a dynamic model of congestion with large and small users," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 82-107.
    3. Jiang, Changmin & Zhang, Anming, 2015. "Airport congestion pricing and terminal investment: Effects of terminal congestion, passenger types, and concessionsAuthor-Name: Wan, Yulai," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 91-113.
    4. Xia, Wenyi & Lindsey, Robin, 2021. "Port adaptation to climate change and capacity investments under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 180-204.
    5. Xiaojuan Yu & Vincent A.C. van den Berg & Erik T. Verhoef, 2024. "Preference heterogeneity in a dynamic flow congestion model," Tinbergen Institute Discussion Papers 24-025/VIII, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Changmin & Zhang, Anming, 2015. "Airport congestion pricing and terminal investment: Effects of terminal congestion, passenger types, and concessionsAuthor-Name: Wan, Yulai," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 91-113.
    2. Silva, Hugo E. & Verhoef, Erik T. & van den Berg, Vincent A.C., 2014. "Airlines’ strategic interactions and airport pricing in a dynamic bottleneck model of congestion," Journal of Urban Economics, Elsevier, vol. 80(C), pages 13-27.
    3. Zhang, Anming & Czerny, Achim I., 2012. "Airports and airlines economics and policy: An interpretive review of recent research," Economics of Transportation, Elsevier, vol. 1(1), pages 15-34.
    4. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    5. Czerny, Achim I. & Zhang, Anming, 2014. "Airport peak-load pricing revisited: The case of peak and uniform tolls," Economics of Transportation, Elsevier, vol. 3(1), pages 90-101.
    6. Verhoef, Erik T., 2017. "Cost recovery of congested infrastructure under market power," Journal of Urban Economics, Elsevier, vol. 101(C), pages 45-56.
    7. Boffa, Federico & Fedele, Alessandro & Iozzi, Alberto, 2023. "Congestion and incentives in the age of driverless fleets," Journal of Urban Economics, Elsevier, vol. 137(C).
    8. Guo, Huanxiu & Jiang, Changmin & Wan, Yulai, 2018. "Can airfares tell? An alternative empirical strategy for airport congestion internalization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 648-661.
    9. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    10. Czerny, Achim I. & Cowan, Simon & Zhang, Anming, 2017. "How to mix per-flight and per-passenger based airport charges: The oligopoly case," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 483-500.
    11. Silva, Hugo E. & Verhoef, Erik T., 2013. "Optimal pricing of flights and passengers at congested airports and the efficiency of atomistic charges," Journal of Public Economics, Elsevier, vol. 106(C), pages 1-13.
    12. Ater, Itai, 2012. "Internalization of congestion at US hub airports," Journal of Urban Economics, Elsevier, vol. 72(2), pages 196-209.
    13. Achim I. Czerny, 2012. "Public Versus Private Airport Behavior When Concession Revenues Exist," WHU Working Paper Series - Economics Group 12-01, WHU - Otto Beisheim School of Management.
    14. Doi, Naoshi & Kono, Tatsuhito & Suzaki, Izumo, 2023. "Optimizing Multiple Airport Charges with Endogenous Airline Quality Considering the Marginal Cost of Public Funds," MPRA Paper 116176, University Library of Munich, Germany.
    15. Brueckner, Jan K., 2009. "Price vs. quantity-based approaches to airport congestion management," Journal of Public Economics, Elsevier, vol. 93(5-6), pages 681-690, June.
    16. Achim I. Czerny & Anming Zhang, 2010. "Airport Congestion Pricing and Passenger Types," WHU Working Paper Series - Economics Group 10-01, WHU - Otto Beisheim School of Management.
    17. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    18. Noto, Claudio, 2020. "Airport slots, secondary trading, and congestion pricing at an airport with a dominant network airline," Research in Transportation Economics, Elsevier, vol. 79(C).
    19. Kidokoro, Yukihiro & Zhang, Anming, 2018. "Airport congestion pricing and cost recovery with side business," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 222-236.
    20. Achim I. Czerny & Anming Zhang, 2012. "Airport Congestion Pricing When Airlines Price Discriminate," WHU Working Paper Series - Economics Group 12-02, WHU - Otto Beisheim School of Management.

    More about this item

    Keywords

    Congestion pricing; Dynamic congestion; Market power; Internalization;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • D62 - Microeconomics - - Welfare Economics - - - Externalities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:105:y:2017:i:c:p:174-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.