IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v104y2017icp123-148.html
   My bibliography  Save this article

A predictive-control framework to address bus bunching

Author

Listed:
  • Andres, Matthias
  • Nair, Rahul

Abstract

Busy bus routes often suffer from buses not arriving at regular intervals but in bunches at bus stops. In this paper we study this bus bunching phenomenon and address it by a combination of data-driven headway prediction and dynamic holding strategies, which allow to modulate buses’ dwell times at stops to reduce the headway deviation. We formulate time headways as time series and compare several prediction methods by testing on data from a busy bus route in Dublin. Furthermore we review and extend an analytical model of an artificial bus route and discuss stability properties and dynamic holding strategies using both data available at the time and predicted headway data. In a numerical simulation we illustrate how the combination of two simple concepts lead to a promising strategy to reduce bus bunching.

Suggested Citation

  • Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
  • Handle: RePEc:eee:transb:v:104:y:2017:i:c:p:123-148
    DOI: 10.1016/j.trb.2017.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151630892X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
    2. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    3. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    4. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    5. Carlos Gershenson & Luis A Pineda, 2009. "Why Does Public Transport Not Arrive on Time? The Pervasiveness of Equal Headway Instability," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-15, October.
    6. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    7. Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
    8. J. K. Jolliffe & T. P. Hutchinson, 1975. "A Behavioural Explanation of the Association Between Bus and Passenger Arrivals at a Bus Stop," Transportation Science, INFORMS, vol. 9(3), pages 248-282, August.
    9. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    10. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    11. Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
    12. David Verbich & Ehab Diab & Ahmed El-Geneidy, 2016. "Have they bunched yet? An exploratory study of the impacts of bus bunching on dwell and running times," Public Transport, Springer, vol. 8(2), pages 225-242, September.
    13. Arnold Barnett, 1974. "On Controlling Randomness in Transit Operations," Transportation Science, INFORMS, vol. 8(2), pages 102-116, May.
    14. Edward Ignall & Peter Kolesar, 1974. "Optimal Dispatching of an Infinite-Capacity Shuttle: Control at a Single Terminal," Operations Research, INFORMS, vol. 22(5), pages 1008-1024, October.
    15. G. F. Newell, 1974. "Control of Pairing of Vehicles on a Public Transportation Route, Two Vehicles, One Control Point," Transportation Science, INFORMS, vol. 8(3), pages 248-264, August.
    16. Philippe H. J. Marguier & Avishai Ceder, 1984. "Passenger Waiting Strategies for Overlapping Bus Routes," Transportation Science, INFORMS, vol. 18(3), pages 207-230, August.
    17. E. E. Osuna & G. F. Newell, 1972. "Control Strategies for an Idealized Public Transportation System," Transportation Science, INFORMS, vol. 6(1), pages 52-72, February.
    18. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    19. Xu Jun Eberlein & Nigel H. M. Wilson & David Bernstein, 2001. "The Holding Problem with Real–Time Information Available," Transportation Science, INFORMS, vol. 35(1), pages 1-18, February.
    20. Rui Jiang & Mao-Bin Hu & Bin Jia & Qing-Song Wu, 2003. "Realistic bus route model considering the capacity of the bus," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 34(3), pages 367-372, August.
    21. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    22. Pilachowski, Joshua Michael, 2009. "An Approach to Reducing Bus Bunching," University of California Transportation Center, Working Papers qt6zc5j8xg, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    2. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    3. Viktoriya Degeler & Léonie Heydenrijk-Ottens & Ding Luo & Niels Oort & Hans Lint, 2021. "Unsupervised approach towards analysing the public transport bunching swings formation phenomenon," Public Transport, Springer, vol. 13(3), pages 533-555, October.
    4. Myungseob (Edward) Kim & Eungcheol Kim, 2023. "Joint Optimization of Distance-Based Fares and Headway for Fixed-Route Bus Operations," Sustainability, MDPI, vol. 15(21), pages 1-14, October.
    5. Jenelius, Erik, 2018. "Public transport experienced service reliability: Integrating travel time and travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 275-291.
    6. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Li, Peng & Wu, Weitiao & Pei, Xiangjing, 2023. "A separate modelling approach for short-term bus passenger flow prediction based on behavioural patterns: A hybrid decision tree method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    8. Junyong Jang & Yongbin Cho & Juntae Park, 2024. "Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    9. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    10. Dong Liu & Feng Xiao & Jian Luo & Fan Yang, 2023. "Deep Reinforcement Learning-Based Holding Control for Bus Bunching under Stochastic Travel Time and Demand," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    11. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    12. Fatemeh Enayatollahi & Ahmed Osman Idris & M. A. Amiri Atashgah, 2019. "Modelling bus bunching under variable transit demand using cellular automata," Public Transport, Springer, vol. 11(2), pages 269-298, August.
    13. Mohammad Sadrani & Ahmad Reza Jafarian-Moghaddam & Mohsen Aboutalebi Esfahani & Amir Masoud Rahimi, 2023. "Designing limited-stop bus services for minimizing operator and user costs under crowding conditions," Public Transport, Springer, vol. 15(1), pages 97-128, March.
    14. S. Sajikumar & D. Bijulal, 2022. "Zero bunching solution for a local public transport system with multiple-origins bus operation," Public Transport, Springer, vol. 14(3), pages 655-681, October.
    15. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    16. Paula Nguyen & Ehab Diab & Amer Shalaby, 2019. "Understanding the factors that influence the probability and time to streetcar bunching incidents," Public Transport, Springer, vol. 11(2), pages 299-320, August.
    17. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.
    18. Minyu Shen & Weihua Gu & Michael J. Cassidy & Yongjie Lin & Wei Ni, 2024. "A vicious cycle along busy bus corridors and how to abate it," Papers 2403.08230, arXiv.org.
    19. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    2. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    3. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    4. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    5. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Minyu Shen & Weihua Gu & Michael J. Cassidy & Yongjie Lin & Wei Ni, 2024. "A vicious cycle along busy bus corridors and how to abate it," Papers 2403.08230, arXiv.org.
    7. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    8. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    9. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    10. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    11. Wang, Zhichao & Jiang, Rui & Jiang, Yu & Gao, Ziyou & Liu, Ronghui, 2024. "Modelling bus bunching along a common line corridor considering passenger arrival time and transfer choice under stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    12. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    13. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    14. Petit, Antoine & Ouyang, Yanfeng & Lei, Chao, 2018. "Dynamic bus substitution strategy for bunching intervention," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 1-16.
    15. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    16. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    17. Daganzo, Carlos F. & Pilachowski, Josh, 2009. "Reducing bunching with bus-to-bus cooperation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0551g0zw, Institute of Transportation Studies, UC Berkeley.
    18. Berrebi, Simon J. & Crudden, Sean Óg & Watkins, Kari E., 2018. "Translating research to practice: Implementing real-time control on high-frequency transit routes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 213-226.
    19. Gabriel E. Sánchez-Martínez & Nigel H. M. Wilson & Haris N. Koutsopoulos, 2017. "Schedule-free high-frequency transit operations," Public Transport, Springer, vol. 9(1), pages 285-305, July.
    20. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:104:y:2017:i:c:p:123-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.