IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7172-d1460672.html
   My bibliography  Save this article

Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives

Author

Listed:
  • Junyong Jang

    (Public Transportation Division, Sejong City Hall, Sejong City 30103, Republic of Korea)

  • Yongbin Cho

    (Department of Transportation, Korea National University of Transportation, Chungju 27469, Republic of Korea)

  • Juntae Park

    (Department of Transportation, Korea National University of Transportation, Chungju 27469, Republic of Korea)

Abstract

The purpose of this study is to develop an optimal bus route search algorithm that considers both the user’s and supplier’s perspectives. The process of providing bus route service involves route network design, route allocation, and operation and management in sequence. Among these, establishing the optimal rationality for route network design in practical applications is challenging, and route modifications often occur during the operation process. To minimize these practical difficulties, this study proposes the Bus Route Sketch (BRS) methodology. This methodology, designed for network-level optimization, distinguishes itself from existing bus route setting methodologies by minimizing travel costs while taking user needs into account. This study yielded positive results, with the evaluation score improving from 8.83 to 9.50 from the supplier’s perspective and from 7.13 to 9.89 from the user’s perspective. This BRS methodology, developed to suit both route planning and operation processes, is expected to be utilized in the practical evaluation, adjustment, and design of bus routes.

Suggested Citation

  • Junyong Jang & Yongbin Cho & Juntae Park, 2024. "Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7172-:d:1460672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lownes, Nicholas E. & Machemehl, Randy B., 2010. "Exact and heuristic methods for public transit circulator design," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 309-318, February.
    2. Dion, Francois & Rakha, Hesham, 2006. "Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 745-766, November.
    3. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Muhammad Ashraf Javid & Nazam Ali & Syed Arif Hussain Shah & Muhammad Abdullah, 2021. "Travelers’ Attitudes Toward Mobile Application–Based Public Transport Services in Lahore," SAGE Open, , vol. 11(1), pages 21582440209, January.
    5. Alan Murray, 2003. "A Coverage Model for Improving Public Transit System Accessibility and Expanding Access," Annals of Operations Research, Springer, vol. 123(1), pages 143-156, October.
    6. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    7. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    8. Claire, Papaix & Dupont-Kieffer, Ariane & Palmier, Patrick, 2022. "Potential accessibility to the workplace by public transit and its social distribution in Lille, France: A scenario-based equity appraisal," Transport Policy, Elsevier, vol. 125(C), pages 256-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    2. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    3. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    4. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    6. Jaewoong Yun, 2023. "Strategies for Improving the Sustainability of Fare-Free Policy for the Elderly through Preferences by Travel Modes," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    7. Xinyao Yin & Junhua Chen & Yuexuan Li, 2024. "Simulation-Based Resilience Evaluation for Urban Rail Transit Transfer Stations," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    8. Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
    9. Hongyan Dui & Xinyue Wang & Haohao Zhou, 2023. "Redundancy-Based Resilience Optimization of Multi-Component Systems," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    10. Baray, Jérôme & Cliquet, Gérard, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model: Maternity hospitals in France," Journal of Business Research, Elsevier, vol. 66(1), pages 127-132.
    11. Canca, David & Andrade-Pineda, José Luis & De-Los-Santos, Alicia & González-R, Pedro Luis, 2021. "A quantitative approach for the long-term assessment of Railway Rapid Transit network construction or expansion projects," European Journal of Operational Research, Elsevier, vol. 294(2), pages 604-621.
    12. Li, Zhitao & Tang, Jinjun & Zhao, Chuyun & Gao, Fan, 2023. "Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    14. Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.
    15. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    16. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    17. Fatemeh Enayatollahi & Ahmed Osman Idris & M. A. Amiri Atashgah, 2019. "Modelling bus bunching under variable transit demand using cellular automata," Public Transport, Springer, vol. 11(2), pages 269-298, August.
    18. S. Sajikumar & D. Bijulal, 2022. "Zero bunching solution for a local public transport system with multiple-origins bus operation," Public Transport, Springer, vol. 14(3), pages 655-681, October.
    19. Matisziw, Timothy C. & Murray, Alan T. & Kim, Changjoo, 2006. "Strategic route extension in transit networks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 661-673, June.
    20. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7172-:d:1460672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.