IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v40y2006i4p529-539.html
   My bibliography  Save this article

Optimal Slack Time for Schedule-Based Transit Operations

Author

Listed:
  • Jiamin Zhao

    (Oracle Corporation, Redwood Shores, California 94065)

  • Maged Dessouky

    (Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089-0193)

  • Satish Bukkapatnam

    (School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma 74078)

Abstract

To improve service reliability, many transit agencies include significant amounts of slack in the schedule. However, too much slack in the schedule reduces service frequency, given a fixed vehicle fleet size. We study the problem of determining the optimal slack that minimizes the passengers’ expected waiting times under schedule-based control. By applying a D/G/c queue model, we show that the system is stable if slack is added in the schedule. For a single-bus loop transit network, we derive convexity of mean and variance of bus delays and provide an exact solution if the travel time is exponentially distributed. For the case of multiple buses and other travel time distributions, we provide several approximation approaches and compare them to simulation results. The simulation results show that our approximations are good for interval of appropriate slack, which often contains the optimal value.

Suggested Citation

  • Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
  • Handle: RePEc:inm:ortrsc:v:40:y:2006:i:4:p:529-539
    DOI: 10.1287/trsc.1060.0170
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1060.0170
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1060.0170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    2. Carey, Malachy, 1994. "Reliability of interconnected scheduled services," European Journal of Operational Research, Elsevier, vol. 79(1), pages 51-72, November.
    3. Arnold Barnett, 1974. "On Controlling Randomness in Transit Operations," Transportation Science, INFORMS, vol. 8(2), pages 102-116, May.
    4. G. F. Newell, 1974. "Control of Pairing of Vehicles on a Public Transportation Route, Two Vehicles, One Control Point," Transportation Science, INFORMS, vol. 8(3), pages 248-264, August.
    5. E. E. Osuna & G. F. Newell, 1972. "Control Strategies for an Idealized Public Transportation System," Transportation Science, INFORMS, vol. 6(1), pages 52-72, February.
    6. Arnold I. Barnett, 1978. "Control Strategies for Transport Systems with Nonlinear Waiting Costs," Transportation Science, INFORMS, vol. 12(2), pages 119-136, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    2. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    3. Hall, Randolph & Dessouky, Maged & Zhang, Lei & Singh, Ajay & Patel, Vishal, 1999. "Evaluation of ITS Technology for Bus Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2nq1824t, Institute of Transportation Studies, UC Berkeley.
    4. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    5. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    6. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    7. Pilachowski, Joshua Michael, 2009. "An Approach to Reducing Bus Bunching," University of California Transportation Center, Working Papers qt6zc5j8xg, University of California Transportation Center.
    8. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    9. Berrebi, Simon J. & Crudden, Sean Óg & Watkins, Kari E., 2018. "Translating research to practice: Implementing real-time control on high-frequency transit routes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 213-226.
    10. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    11. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    12. Adamski, Andrzej & Turnau, Andrzej, 1998. "Simulation support tool for real-time dispatching control in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 73-87, February.
    13. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    14. Mohammad Reza Amin-Naseri & Vahid Baradaran, 2015. "Accurate Estimation of Average Waiting Time in Public Transportation Systems," Transportation Science, INFORMS, vol. 49(2), pages 213-222, May.
    15. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    16. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "A Dynamic Holding Strategy to Improve Bus ScheduleReliability and Commercial Speed," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0jp7c8k8, Institute of Transportation Studies, UC Berkeley.
    17. Carey, Malachy & Kwiecinski, Andrzej, 1995. "Properties of expected costs and performance measures in stochastic models of scheduled transport," European Journal of Operational Research, Elsevier, vol. 83(1), pages 182-199, May.
    18. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    19. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    20. Fan, Yueyue & Zhang, Yunteng, 2019. "Next-Generation Transit System Design During a Revolution of Shared Mobility," Institute of Transportation Studies, Working Paper Series qt77t6g3w4, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:40:y:2006:i:4:p:529-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.