IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v94y2016icp514-531.html
   My bibliography  Save this article

Interplay between electricity and transport sectors – Integrating the Swiss car fleet and electricity system

Author

Listed:
  • Kannan, Ramachandran
  • Hirschberg, Stefan

Abstract

Electric vehicles are seen as a future mobility option to respond to long term energy and environmental problems. The 2050 Swiss energy strategy envisages 30–75% introduction of electric cars by 2050, which is designed to support the goal of decarbonising the energy sector. While the Swiss government has decided to phase out nuclear electricity, deployment of electric cars can affect electricity supply and emission trajectories. Therefore, potential interactions between the electricity and transport sectors must be considered in assessing the future role of electric mobility. We analyse a set of scenarios using the Swiss TIMES energy system model with high temporal resolution. We generate insights into cross-sectoral trade-offs between electricity supply and electrification/decarbonisation of car fleets. E-mobility supports decarbonisation of car fleet even if electricity is supplied from large gas power plants or relatively low cost sources of imported electricity. However, domestic renewable based electricity generation is expected to be too limited to support e-mobility. Stringent abatement targets without centralised gas power plants render e-mobility less attractive, with natural gas hybrids becoming cost effective. Thus the cost effectiveness of electric mobility depends on policy decisions in the electricity sector. The substitution of fossil fuels with electricity in transport has the potential to reduce revenues from fuel taxation. Therefore it is necessary to ensure consistency between electricity sector and transport energy policies.

Suggested Citation

  • Kannan, Ramachandran & Hirschberg, Stefan, 2016. "Interplay between electricity and transport sectors – Integrating the Swiss car fleet and electricity system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 514-531.
  • Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:514-531
    DOI: 10.1016/j.tra.2016.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416307248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    2. Jenn, Alan & Azevedo, Inês Lima & Fischbeck, Paul, 2015. "How will we fund our roads? A case of decreasing revenue from electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 136-147.
    3. Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Uwe Sauer, Dirk & Eckstein, Lutz, 2011. "Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany," Energy Policy, Elsevier, vol. 39(10), pages 5871-5882, October.
    4. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    5. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    6. Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
    7. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    8. Lund, Henrik & Münster, Ebbe, 2006. "Integrated transportation and energy sector CO2 emission control strategies," Transport Policy, Elsevier, vol. 13(5), pages 426-433, September.
    9. Kannan, Ramachandran & Turton, Hal, 2012. "Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system," Energy Policy, Elsevier, vol. 50(C), pages 391-406.
    10. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    11. Seixas, J. & Simões, S. & Dias, L. & Kanudia, A. & Fortes, P. & Gargiulo, M., 2015. "Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling," Energy Policy, Elsevier, vol. 80(C), pages 165-176.
    12. Jordi Perdiguero & Juan Luis Jiménez, 2012. "“Policy options for the promotion of electric vehicles: a review”," IREA Working Papers 201208, University of Barcelona, Research Institute of Applied Economics, revised Mar 2012.
    13. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    14. Srivastava, Anurag K. & Annabathina, Bharath & Kamalasadan, Sukumar, 2010. "The Challenges and Policy Options for Integrating Plug-in Hybrid Electric Vehicle into the Electric Grid," The Electricity Journal, Elsevier, vol. 23(3), pages 83-91, April.
    15. Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Sauer, Dirk Uwe & Eckstein, Lutz, 2010. "Battery Sizing for Serial Plug-in Hybrid Vehicles: A Model-Based Economic Analysis for Germany," FCN Working Papers 14/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jun 2011.
    16. Kannan, Ramachandran & Turton, Hal, 2016. "Long term climate change mitigation goals under the nuclear phase out policy: The Swiss energy system transition," Energy Economics, Elsevier, vol. 55(C), pages 211-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    2. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    4. Martin Rüdisüli & Sinan L. Teske & Urs Elber, 2019. "Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System," Energies, MDPI, vol. 12(12), pages 1-38, June.
    5. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    6. Luh, Sandro & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2024. "Quantifying the impact of travel time duration and valuation on modal shift in Swiss passenger transportation," Applied Energy, Elsevier, vol. 356(C).
    7. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    8. Rüdisüli, Martin & Bach, Christian & Bauer, Christian & Beloin-Saint-Pierre, Didier & Elber, Urs & Georges, Gil & Limpach, Robert & Pareschi, Giacomo & Kannan, Ramachandran & Teske, Sinan L., 2022. "Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    2. Fontaínhas, José & Cunha, Jorge & Ferreira, Paula, 2016. "Is investing in an electric car worthwhile from a consumers' perspective?," Energy, Elsevier, vol. 115(P2), pages 1459-1477.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    5. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    6. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    7. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    9. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    10. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
    11. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    12. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    13. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    14. Ramachandran Kannan & Evangelos Panos & Stefan Hirschberg & Tom Kober, 2022. "A net‐zero Swiss energy system by 2050: Technological and policy options for the transition of the transportation sector," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
    15. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    16. Honarmand, Masoud & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, Elsevier, vol. 65(C), pages 572-579.
    17. Armando Cartenì & Ilaria Henke & Clorinda Molitierno & Luigi Di Francesco, 2020. "Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    18. Teixeira, Ana Carolina Rodrigues & Sodré, José Ricardo, 2016. "Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles," Energy, Elsevier, vol. 115(P3), pages 1617-1622.
    19. Higgins, Andrew & Grozev, George & Ren, Zhengen & Garner, Stephen & Walden, Glenn & Taylor, Michelle, 2014. "Modelling future uptake of distributed energy resources under alternative tariff structures," Energy, Elsevier, vol. 74(C), pages 455-463.
    20. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:514-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.