IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v94y2016icp295-307.html
   My bibliography  Save this article

How does our natural and built environment affect the use of bicycle sharing?

Author

Listed:
  • Mateo-Babiano, Iderlina
  • Bean, Richard
  • Corcoran, Jonathan
  • Pojani, Dorina

Abstract

Public bicycle-sharing programs (PBSP) are short-term bicycle hire systems. In recent years their popularity has soared. This study examined Brisbane’s CityCycle scheme, the largest PBSP in Australia, and investigated the role of (natural and built) environmental features on usage. The study addressed four research questions: (1) What are the dynamics of PBSP use in terms of travel time, speed, and distance? (2) What is the relationship between PBSP participation and cycling infrastructure? (3) How does land-use affect PBSP usage? (4) How does topography affect PBSP usage? To answer these four questions, the authors analysed large existing datasets on CityCycle usage, land-use, topography, and cycling infrastructure, which were each obtained through multiple sources. Correlation and regression analysis were employed to establish significant relationships amongst variables. It was found that: most users take short trips within the free initial period provided under the CityCycle scheme and do not incur any charges other than for membership; PBSP use is strongly correlated with the length of off-road bikeways near each CityCycle station; CityCycle is more frequently used on weekends for recreational purposes; loop journeys, which are also associated with leisure trips, are popular in Brisbane, especially on weekends; leisure trips are taken at a relatively slower pace than utilitarian trips; during weekdays, a trimodal peak is clearly evident, with PBSP commute trips in the morning and evening peaks and a smaller but significant peak around lunchtime; and users avoid returning CityCycle bicycles to stations located on hilltops. These findings can collectively enhance both the siting and design of PBSP, thereby optimizing investments in sustainable mobility.

Suggested Citation

  • Mateo-Babiano, Iderlina & Bean, Richard & Corcoran, Jonathan & Pojani, Dorina, 2016. "How does our natural and built environment affect the use of bicycle sharing?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 295-307.
  • Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:295-307
    DOI: 10.1016/j.tra.2016.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415301531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ., 2014. "Method for mapping innovation ecosystems," Chapters, in: Mapping National Innovation Ecosystems, chapter 2, pages 32-41, Edward Elgar Publishing.
    2. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    3. CGIAR Research Program on Water, Land and Ecosystems (WLE)., 2014. "Ecosystem services and resilience framework," IWMI Books, Reports H046683, International Water Management Institute.
    4. ., 2014. "The system of the cities," Chapters, in: China’s Urbanization and the World Economy, chapter 9, pages 88-100, Edward Elgar Publishing.
    5. Ju-Chuan Wu & Sung-Chiang Lin & Chih-Jou Chen & Chinho Lin, 2014. "A Game-Based Simulation System for ERP Learning," Human Capital without Borders: Knowledge and Learning for Quality of Life; Proceedings of the Management, Knowledge and Learning International Conference 2014,, ToKnowPress.
    6. Jessica Schoner & David Levinson, 2014. "The missing link: bicycle infrastructure networks and ridership in 74 US cities," Transportation, Springer, vol. 41(6), pages 1187-1204, November.
    7. Regue, Robert & Recker, Will, 2014. "Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 192-209.
    8. ., 2014. "The innovation ecosystem in Shanghai, China," Chapters, in: Mapping National Innovation Ecosystems, chapter 9, pages 164-190, Edward Elgar Publishing.
    9. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    10. ., 2014. "The German national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 5, pages 83-103, Edward Elgar Publishing.
    11. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    12. Ralph Buehler & John Pucher, 2012. "Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes," Transportation, Springer, vol. 39(2), pages 409-432, March.
    13. Raja Jurdak, 2013. "The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    14. ., 2014. "The Israeli national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 3, pages 42-63, Edward Elgar Publishing.
    15. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    16. ., 2014. "The Polish national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 4, pages 64-82, Edward Elgar Publishing.
    17. Martin Zaltz Austwick & Oliver O’Brien & Emanuele Strano & Matheus Viana, 2013. "The Structure of Spatial Networks and Communities in Bicycle Sharing Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    18. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    19. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    20. ., 2014. "The Spanish national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 7, pages 119-138, Edward Elgar Publishing.
    21. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.
    22. Fuller, D. & Gauvin, L. & Kestens, Y. & Daniel, M. & Fournier, M. & Morency, P. & Drouin, L., 2013. "Impact evaluation of a public bicycle share program on cycling: A case example of BIXI in Montreal, Quebec," American Journal of Public Health, American Public Health Association, vol. 103(3), pages 85-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Hongqiang Yang & Xiaobiao Zhang, 2016. "A Rethinking of the Production Approach in IPCC: Its Objectiveness in China," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
    3. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    4. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    5. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    6. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    7. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    8. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    9. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    10. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    12. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    13. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    14. Maas, Suzanne & Nikolaou, Paraskevas & Attard, Maria & Dimitriou, Loukas, 2021. "Spatial and temporal analysis of shared bicycle use in Limassol, Cyprus," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    16. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    17. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    18. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    19. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    20. Jiaoe Wang & Jie Huang & Michael Dunford, 2019. "Rethinking the Utility of Public Bicycles: The Development and Challenges of Station-Less Bike Sharing in China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:295-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.