IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v81y2015icp47-61.html
   My bibliography  Save this article

Planning for the unexpected: The value of reserve capacity for public transport network robustness

Author

Listed:
  • Cats, Oded
  • Jenelius, Erik

Abstract

Public transport networks (PTN) are subject to recurring service disruptions. Most studies of the robustness of PTN have focused on network topology and considered vulnerability in terms of connectivity reliability. While these studies provide insights on general design principles, there is lack of knowledge concerning the effectiveness of different strategies to reduce the impacts of disruptions. This paper proposes and demonstrates a methodology for evaluating the effectiveness of a strategic increase in capacity on alternative PTN links to mitigate the impact of unexpected network disruptions. The evaluation approach consists of two stages: identifying a set of important links and then for each identified important link, a set of capacity enhancement schemes is evaluated. The proposed method integrates stochastic supply and demand models, dynamic route choice and limited operational capacity. This dynamic agent-based modelling of network performance enables to capture cascading network effects as well as the adaptive redistribution of passenger flows. An application for the rapid PTN of Stockholm, Sweden, demonstrates how the proposed method could be applied to sequentially designed scenarios based on their performance indicators. The method presented in this paper could support policy makers and operators in prioritizing measures to increase network robustness by improving system capacity to absorb unexpected disruptions.

Suggested Citation

  • Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
  • Handle: RePEc:eee:transa:v:81:y:2015:i:c:p:47-61
    DOI: 10.1016/j.tra.2015.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415000300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    2. Beirão, Gabriela & Sarsfield Cabral, J.A., 2007. "Understanding attitudes towards public transport and private car: A qualitative study," Transport Policy, Elsevier, vol. 14(6), pages 478-489, November.
    3. Ash, J. & Newth, D., 2007. "Optimizing complex networks for resilience against cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 673-683.
    4. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    5. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    6. Snelder, M. & van Zuylen, H.J. & Immers, L.H., 2012. "A framework for robustness analysis of road networks for short term variations in supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 828-842.
    7. Knoop, Victor L. & Snelder, Maaike & van Zuylen, Henk J. & Hoogendoorn, Serge P., 2012. "Link-level vulnerability indicators for real-world networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 843-854.
    8. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    9. Angeloudis, Panagiotis & Fisk, David, 2006. "Large subway systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 553-558.
    10. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    11. Cats, Oded, 2013. "Multi-agent transit operations and assignment model," Working papers in Transport Economics 2013:24, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    12. El-Rashidy, Rawia Ahmed & Grant-Muller, Susan M., 2014. "An assessment method for highway network vulnerability," Journal of Transport Geography, Elsevier, vol. 34(C), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cats, O. & Yap, M. & van Oort, N., 2016. "Exposing the role of exposure: Public transport network risk analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 1-14.
    2. Cats, O., 2016. "The robustness value of public transport development plans," Journal of Transport Geography, Elsevier, vol. 51(C), pages 236-246.
    3. Mylonas, Chrysostomos & Mitsakis, Evangelos & Kepaptsoglou, Konstantinos, 2023. "Criticality analysis in road networks with graph-theoretic measures, traffic assignment, and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    4. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    6. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    8. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    9. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    10. Ghavami, Seyed Morsal, 2019. "Multi-criteria spatial decision support system for identifying strategic roads in disaster situations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 23-36.
    11. Oliveira, Eduardo Leal de & Portugal, Licínio da Silva & Porto Junior, Walter, 2016. "Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 195-208.
    12. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    13. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    14. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    15. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    16. Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    17. Almotahari, Amirmasoud & Yazici, M. Anil, 2019. "A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 67-82.
    18. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    19. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    20. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:81:y:2015:i:c:p:47-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.