IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v44y2010i5p323-336.html
   My bibliography  Save this article

Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach

Author

Listed:
  • Sullivan, J.L.
  • Novak, D.C.
  • Aultman-Hall, L.
  • Scott, D.M.

Abstract

A wide range of relatively short-term disruptive events such as partial flooding, visibility reductions, traction hazards due to weather, and pavement deterioration occur on transportation networks on a daily basis. Despite being relatively minor when compared to catastrophes, these events still have profound impacts on traffic flow. To date there has been very little distinction drawn between different types of network-disruption studies and how the methodological approaches used in those studies differ depending on the specific research objectives and on the disruption scenarios being modeled. In this paper, we advance a methodological approach that employs different link-based capacity-disruption values for identifying and ranking the most critical links and quantifying network robustness in a transportation network. We demonstrate how an ideal capacity-disruption range can be objectively determined for a particular network and introduce a scalable system-wide performance measure, called the Network Trip Robustness (NTR) that can be used to directly compare networks of different sizes, topologies, and connectivity levels. Our approach yields results that are independent of the degree of connectivity and can be used to evaluate robustness on networks with isolating links. We show that system-wide travel-times and the rank-ordering of the most critical links in a network can vary dramatically based on both the capacity-disruption level and on the overall connectivity of the network. We further show that the relationships between network robustness, the capacity-disruption level used for modeling, and network connectivity are non-linear and not necessarily intuitive. We discuss our findings with respect to Braess' Paradox.

Suggested Citation

  • Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
  • Handle: RePEc:eee:transa:v:44:y:2010:i:5:p:323-336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(10)00041-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tony H. Grubesic & Alan T. Murray & Jessica N. Mefford, 2007. "Continuity in Critical Network Infrastructures: Accounting for Nodal Disruptions," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 10, pages 197-220, Springer.
    2. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    3. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    4. Yanyan Chen & Michael G. H. Bell & Ioannis Kaparias, 2007. "Reliability Analysis of Road Networks and Preplanning of Emergency Rescue Paths," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 9, pages 173-196, Springer.
    5. Ham, Heejoo & Kim, Tschangho John & Boyce, David, 2005. "Assessment of economic impacts from unexpected events with an interregional commodity flow and multimodal transportation network model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(10), pages 849-860, December.
    6. Timothy C. Matisziw & Alan T. Murray & Tony H. Grubesic, 2007. "Bounding Network Interdiction Vulnerability Through Cutset Identification," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 12, pages 243-256, Springer.
    7. Katja Berdica & Lars-Göran Mattsson, 2007. "Vulnerability: A Model-Based Case Study of the Road Network in Stockholm," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 5, pages 81-106, Springer.
    8. Åke J. Holmgren, 2007. "A Framework for Vulnerability Assessment of Electric Power Systems," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 3, pages 31-55, Springer.
    9. Dangalchev, Chavdar, 2006. "Residual closeness in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 556-564.
    10. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    11. Hossain Poorzahedy & Sayed Bushehri, 2005. "Network performance improvement under stochastic events with long-term effects," Transportation, Springer, vol. 32(1), pages 65-85, January.
    12. Myung, Young-Soo & Kim, Hyun-joon, 2004. "A cutting plane algorithm for computing k-edge survivability of a network," European Journal of Operational Research, Elsevier, vol. 156(3), pages 579-589, August.
    13. Du, Zhen-Ping & Nicholson, Alan, 1997. "Degradable transportation systems: Sensitivity and reliability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 225-237, June.
    14. Alan Murray & Timothy Matisziw & Tony Grubesic, 2007. "Critical network infrastructure analysis: interdiction and system flow," Journal of Geographical Systems, Springer, vol. 9(2), pages 103-117, June.
    15. Lawrence V. Snyder & Mark S. Daskin, 2007. "Models for Reliable Supply Chain Network Design," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 13, pages 257-289, Springer.
    16. Morton E. O’Kelly & Hyun Kim, 2007. "Survivability of Commercial Backbones with Peering: A Case Study of Korean Networks," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 6, pages 107-128, Springer.
    17. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    18. William H. K. Lam & Ning Zhang & Hong K. Lo, 2007. "A Reliability-based User Equilibrium Model for Traffic Assignment," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 8, pages 151-171, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    2. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    3. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    4. Jenelius, Erik, 2010. "User inequity implications of road network vulnerability," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 57-73.
    5. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    6. Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
    7. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    8. Tuzun Aksu, Dilek & Ozdamar, Linet, 2014. "A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 56-67.
    9. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    10. Juan Carlos García-Palomares & Javier Gutiérrez & Juan Carlos Martín & Borja Moya-Gómez, 2018. "An analysis of the Spanish high capacity road network criticality," Transportation, Springer, vol. 45(4), pages 1139-1159, July.
    11. Federico Rupi & Silvia Bernardi & Guido Rossi & Antonio Danesi, 2015. "The Evaluation of Road Network Vulnerability in Mountainous Areas: A Case Study," Networks and Spatial Economics, Springer, vol. 15(2), pages 397-411, June.
    12. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    13. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    14. Gokhan Karakose & Ronald G. McGarvey, 2019. "Optimal Detection of Critical Nodes: Improvements to Model Structure and Performance," Networks and Spatial Economics, Springer, vol. 19(1), pages 1-26, March.
    15. Sarlas, Georgios & Páez, Antonio & Axhausen, Kay W., 2020. "Betweenness-accessibility: Estimating impacts of accessibility on networks," Journal of Transport Geography, Elsevier, vol. 84(C).
    16. Yu Miao & Anning Ni, 2019. "Vulnerability Analysis of Intercity Multimode Transportation Networks; A Case Study of the Yangtze River Delta," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    17. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    18. Ortega, Emilio & Martín, Belén & Aparicio, Ángel, 2020. "Identification of critical sections of the Spanish transport system due to climate scenarios," Journal of Transport Geography, Elsevier, vol. 84(C).
    19. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    20. Ghavami, Seyed Morsal, 2019. "Multi-criteria spatial decision support system for identifying strategic roads in disaster situations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 23-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:44:y:2010:i:5:p:323-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.