IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v69y2014icp1-10.html
   My bibliography  Save this article

Study on some bus transport networks in China with considering spatial characteristics

Author

Listed:
  • Yang, Xu-Hua
  • Chen, Guang
  • Chen, Sheng-Yong
  • Wang, Wan-Liang
  • Wang, Lei

Abstract

Many real-world networks are embedded in spaces. Recent studies have found that spatial characteristics are closely related to network features. Bus transport networks (BTNs) are typical spatially embedded networks, but their spatial characteristics are commonly disregarded in previous researches. In this paper, we propose a new spatial representation model for BTNs with information on the geographical location of bus stations and routes, for which we named as the ES model. The new model aids in the study of real-world BTNs. By performing a statistical study with the new representation model on three typical BTNs in China, namely the Beijing, Shanghai and Hangzhou BTNs, we identify some network features that are consistent with those revealed by previous studies, as well as some new features such as high clustering of short-distance station pairs (SSPs) and small average number of bus routes in a path. The result shows that the existence of SSPs can significantly influence the characteristics of BTNs. Besides, with the help of the ES model, we designed a new transfer algorithm for BTNs.

Suggested Citation

  • Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
  • Handle: RePEc:eee:transa:v:69:y:2014:i:c:p:1-10
    DOI: 10.1016/j.tra.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856414001840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
    2. Sui, Yi & Shao, Feng-jing & Sun, Ren-cheng & Li, Shu-jing, 2012. "Space evolution model and empirical analysis of an urban public transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3708-3717.
    3. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    4. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    5. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    6. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    7. Chen, Xumei & Yu, Lei & Zhang, Yushi & Guo, Jifu, 2009. "Analyzing urban bus service reliability at the stop, route, and network levels," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 722-734, October.
    8. Roca-Riu, Mireia & Estrada, Miquel & Trapote, César, 2012. "The design of interurban bus networks in city centers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1153-1165.
    9. Martin Zaltz Austwick & Oliver O’Brien & Emanuele Strano & Matheus Viana, 2013. "The Structure of Spatial Networks and Communities in Bicycle Sharing Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    10. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    11. Xu, Xinping & Hu, Junhui & Liu, Feng & Liu, Lianshou, 2007. "Scaling and correlations in three bus-transport networks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 441-448.
    12. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2013. "Dynamic formation mechanism of airport competitiveness: The case of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 10-18.
    13. Chen, Long & Chen, Jiancong & Guan, Zhi-Hong & Zhang, Xian-He & Zhang, Ding-Xue, 2012. "Optimization of transport protocols in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3336-3341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    2. Wim Ectors & Bruno Kochan & Davy Janssens & Tom Bellemans & Geert Wets, 2019. "Exploratory analysis of Zipf’s universal power law in activity schedules," Transportation, Springer, vol. 46(5), pages 1689-1712, October.
    3. Hu, Baoyu & Feng, Shumin & Li, Jinyang & Zhao, Hu, 2018. "Statistical analysis of passenger-crowding in bus transport network of Harbin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 426-438.
    4. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    5. Jinlong Wang & Ling Yang & Min Deng & Gui Zhang & Yaoqi Zhang, 2023. "Selection of optimal regulation scheme by simulating spatial network of ecological-economic-social compound system: a case study of Hunan province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2831-2856, March.
    6. Wei, Sheng & Zheng, Wei & Wang, Lei, 2021. "Understanding the configuration of bus networks in urban China from the perspective of network types and administrative division effect," Transport Policy, Elsevier, vol. 104(C), pages 1-17.
    7. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    8. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    9. Yang, Xu-Hua & Cheng, Zhi & Chen, Guang & Wang, Lei & Ruan, Zhong-Yuan & Zheng, Yu-Jun, 2018. "The impact of a public bicycle-sharing system on urban public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 246-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    2. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    4. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    5. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    6. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Wu, Chunliang & Kim, Inhi, 2020. "Analyzing the structural properties of bike-sharing networks: Evidence from the United States, Canada, and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 52-71.
    9. Hu, Baoyu & Feng, Shumin & Nie, Cen, 2017. "Bus transport network of Shenyang considering competitive and cooperative relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 259-268.
    10. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    11. Pu, Han & Li, Yinzhen & Ma, Changxi, 2022. "Topology analysis of Lanzhou public transport network based on double-layer complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    12. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    13. Junhong Hu & Mingshu Yang & Yunzhu Zhen, 2024. "A Review of Resilience Assessment and Recovery Strategies of Urban Rail Transit Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    14. Dong-Joon Kang & Su-Han Woo, 2017. "Liner shipping networks, port characteristics and the impact on port performance," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 274-295, June.
    15. Li, Jin-Yang & Teng, Jing & Wang, Hui, 2024. "Measuring route diversity in spatial and spatial-temporal public transport networks," Transport Policy, Elsevier, vol. 146(C), pages 42-58.
    16. Wu, Zhenxing & Lu, Xi & Deng, Yong, 2015. "Image edge detection based on local dimension: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 9-18.
    17. Psaltoglou, Artemis & Calle, Eusebi, 2018. "Enhanced connectivity index – A new measure for identifying critical points in urban public transportation networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 22-32.
    18. Wei, Sheng & Zheng, Wei & Wang, Lei, 2021. "Understanding the configuration of bus networks in urban China from the perspective of network types and administrative division effect," Transport Policy, Elsevier, vol. 104(C), pages 1-17.
    19. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    20. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:69:y:2014:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.