IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v107y2018icp246-256.html
   My bibliography  Save this article

The impact of a public bicycle-sharing system on urban public transport networks

Author

Listed:
  • Yang, Xu-Hua
  • Cheng, Zhi
  • Chen, Guang
  • Wang, Lei
  • Ruan, Zhong-Yuan
  • Zheng, Yu-Jun

Abstract

As a healthy and environment-friendly trip mode, public bicycle-sharing systems, which have so far been built in hundreds of cities around the world, have been developing rapidly recently. The public bicycle-sharing systems, which are usually spatially embedded where original urban bus transport networks are located, comprise the new urban public transport system together with the bus transport networks. Therefore, studying the impact of the public bicycle-sharing systems on the original urban public transport networks is an important research subject. In this study, using the real spatial location data of the public bicycle-sharing systems of Hangzhou and Ningbo in China, we propose a multi-layer coupling spatial network model that considers the geographical information on bus stations, bus routes, and public bicycle stations by studying the urban public transport networks. The spatial network model consists of bus subnets, short-distance bicycle subnets, and short-distance walk subnets which are interdependent rather than independent. We apply the model to study the influence of bicycling between the short-distance bicycle station pairs (SDB) and walking between the short-distance bus station pairs (SDW) on the performance of the urban public transport networks. Results show that SDB and SDW can significantly reduce the average transfer times, the average path length of passengers’ trips and the Gini coefficient of an urban public transport network. Therefore, the public bicycle-sharing systems can decrease the average trip time of passengers and increase the efficiency of an urban public transport network, as well as effectively improve the uneven level of traffic flow spatial distribution of an urban public transport network and will be helpful to smoothening the traffic flow and alleviating traffic congestion.

Suggested Citation

  • Yang, Xu-Hua & Cheng, Zhi & Chen, Guang & Wang, Lei & Ruan, Zhong-Yuan & Zheng, Yu-Jun, 2018. "The impact of a public bicycle-sharing system on urban public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 246-256.
  • Handle: RePEc:eee:transa:v:107:y:2018:i:c:p:246-256
    DOI: 10.1016/j.tra.2017.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416308345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    2. Frédéric Dobruszkes, 2013. "The geography of European low-cost airline networks: A contemporary analysis," ULB Institutional Repository 2013/135954, ULB -- Universite Libre de Bruxelles.
    3. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    4. Meghan Winters & Michael Brauer & Eleanor M Setton & Kay Teschke, 2013. "Mapping Bikeability: A Spatial Tool to Support Sustainable Travel," Environment and Planning B, , vol. 40(5), pages 865-883, October.
    5. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    6. Dobruszkes, Frédéric, 2013. "The geography of European low-cost airline networks: a contemporary analysis," Journal of Transport Geography, Elsevier, vol. 28(C), pages 75-88.
    7. Ralph Buehler & Andrea Hamre, 2015. "The multimodal majority? Driving, walking, cycling, and public transportation use among American adults," Transportation, Springer, vol. 42(6), pages 1081-1101, November.
    8. Ryerson, Megan S. & Kim, Hyun, 2013. "Integrating airline operational practices into passenger airline hub definition," Journal of Transport Geography, Elsevier, vol. 31(C), pages 84-93.
    9. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    2. Jiayu Bao & Guojun Chen & Zhenghua Liu, 2023. "Exploring the Influence of Parking Penalties on Bike-Sharing System with Willingness Constraints: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    3. Jin Zhang & Wenquan Li & Guoqing Wang & Jingcai Yu, 2021. "Feasibility Study of Transferring Shared Bicycle Users with Commuting Demand to Flex-Route Transit—A Case Study of Nanjing City, China," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    4. Yi, Wenjing & Yan, Jie, 2020. "Energy consumption and emission influences from shared mobility in China: A national level annual data analysis," Applied Energy, Elsevier, vol. 277(C).
    5. Chengming Li & Zhaoxin Dai & Weixiang Peng & Jianming Shen, 2019. "Green Travel Mode: Trajectory Data Cleansing Method for Shared Electric Bicycles," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    6. Kwiatkowski Michał Adam, 2018. "Urban Cycling as an Indicator of Socio-Economic Innovation and Sustainable Transport," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 23-32, December.
    7. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    8. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    9. Jan Petru & Vladislav Krivda, 2021. "The Transport of Oversized Cargoes from the Perspective of Sustainable Transport Infrastructure in Cities," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    10. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    11. Link, Christoph & Strasser, Christoph & Hinterreiter, Michael, 2020. "Free-floating bikesharing in Vienna – A user behaviour analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 168-182.
    12. Matija Kovačić & Maja Mutavdžija & Krešimir Buntak, 2022. "New Paradigm of Sustainable Urban Mobility: Electric and Autonomous Vehicles—A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    13. Wenya Cui & Guangnian Xiao, 2021. "Tripartite Dynamic Game among Government, Bike-Sharing Enterprises, and Consumers under the Influence of Seasons and Quota," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    14. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    15. Zheyan Chen & Dea van Lierop & Dick Ettema, 2020. "Exploring Dockless Bikeshare Usage: A Case Study of Beijing, China," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    16. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    17. Xu, Xiaohan & Huang, Ailing & Shalaby, Amer & Feng, Qian & Chen, Mingyang & Qi, Geqi, 2024. "Exploring cascading failure processes of interdependent multi-modal public transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    18. Demetrio Carmine Festa & Carmen Forciniti, 2019. "Attitude towards Bike Use in Rende, a Small Town in South Italy," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    19. Daozhi Zhao & Di Wang, 2019. "The Research of Tripartite Collaborative Governance on Disorderly Parking of Shared Bicycles Based on the Theory of Planned Behavior and Motivation Theories—A Case of Beijing, China," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    20. Kuo, Pei-Fen & Shen, Chung-Wei & Chiu, Chui-Sheng, 2021. "The impact of large-scale events: A difference-in-difference model for a Pokémon go safari zone event in Tainan and its effect on bikeshare systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 283-299.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budd, Lucy & Francis, Graham & Humphreys, Ian & Ison, Stephen, 2014. "Grounded: Characterising the market exit of European low cost airlines," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 78-85.
    2. Tomasz Stanisław Szopiński & Robert Nowacki, 2014. "Plane Ticket Price Dispersion in the Online Selling System in Poland," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
    3. Dudás, Gábor & Boros, Lajos & Pál, Viktor & Pernyész, Péter, 2016. "Analysis of the lowest airfares considering the different business models of airlines, the case of Budapest," MPRA Paper 74502, University Library of Munich, Germany.
    4. Miriam Marcén & Marina Morales, 2020. "Air passengers during the economic crisis: The Spanish case," Economics Bulletin, AccessEcon, vol. 40(2), pages 1232-1248.
    5. Koo, Tay T.R. & Hossein Rashidi, Taha & Park, Jin-Woo & Wu, Cheng-Lung & Tseng, Wen-Chun, 2017. "The effect of enhanced international air access on the demand for peripheral tourism destinations: Evidence from air itinerary choice behaviour of Korean visitors to Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 116-129.
    6. Ferrer-Rosell, Berta & Coenders, GermÃ, 2017. "Airline type and tourist expenditure: Are full service and low cost carriers converging or diverging?," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 119-125.
    7. de Wit, Jaap G. & Zuidberg, Joost, 2016. "Route churn: an analysis of low-cost carrier route continuity in Europe," Journal of Transport Geography, Elsevier, vol. 50(C), pages 57-67.
    8. John Francis O’Connell & David Connolly, 2017. "The strategic evolution of Aer Lingus from a full-service airline to a low-cost carrier and finally positioning itself into a value hybrid airline," Tourism Economics, , vol. 23(6), pages 1296-1320, September.
    9. Dobruszkes, Frédéric & Mondou, Véronique & Ghedira, Aymen, 2016. "Assessing the impacts of aviation liberalisation on tourism: Some methodological considerations derived from the Moroccan and Tunisian cases," Journal of Transport Geography, Elsevier, vol. 50(C), pages 115-127.
    10. Zhang, Hanxiang & Czerny, Achim I. & Grimme, Wolfgang & Niemeier, Hans-Martin, 2023. "The big three EU Low Cost Carriers before and during the Covid-19 pandemic: Network overlaps and airfare effects," Research in Transportation Economics, Elsevier, vol. 97(C).
    11. Lohmann, Gui & Vianna, Camila, 2016. "Air route suspension: The role of stakeholder engagement and aviation and non-aviation factors," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 199-210.
    12. Dobruszkes, Frédéric & Givoni, Moshe & Vowles, Timothy, 2017. "Hello major airports, goodbye regional airports? Recent changes in European and US low-cost airline airport choice," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 50-62.
    13. Jacques Charlier & Frédéric Dobruszkes, 2020. "Between external forces and internal factors: The geography of domestic airline services in South Africa," ULB Institutional Repository 2013/309837, ULB -- Universite Libre de Bruxelles.
    14. Camelia Monica Gheorghe & Dorin Ivascu & Mihai Sebea & Cristina Stoenescu, 2017. "Exploring The Role Of Alliances, Agreements And Partnerships In The Airline Industry; The Case Of Apg Network Within The Romanian Market," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 161-168, August.
    15. Fageda, Xavier & Suau-Sanchez, Pere & Mason, Keith J., 2015. "The evolving low-cost business model: Network implications of fare bundling and connecting flights in Europe," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 289-296.
    16. Jiang, Yonglei & Yao, Baozhen & Wang, Lu & Feng, Tao & Kong, Lu, 2017. "Evolution trends of the network structure of Spring Airlines in China: A temporal and spatial analysis," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 18-30.
    17. Emilio Gómez-Déniz & Jorge V Pérez-Rodríguez & José Boza-Chirino, 2020. "Modelling tourist expenditure at origin and destination," Tourism Economics, , vol. 26(3), pages 437-460, May.
    18. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.
    19. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    20. Allroggen, Florian & Wittman, Michael D. & Malina, Robert, 2015. "How air transport connects the world – A new metric of air connectivity and its evolution between 1990 and 2012," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 184-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:107:y:2018:i:c:p:246-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.