IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4660-4672.html
   My bibliography  Save this article

Bus transport network model with ideal n-depth clique network topology

Author

Listed:
  • Yang, Xu-Hua
  • Chen, Guang
  • Sun, Bao
  • Chen, Sheng-Yong
  • Wang, Wan-Liang

Abstract

We propose an ideal n-depth clique network model. In this model, the original network is composed of cliques (maximal complete subgraphs) that overlap with each other. The network expands continuously by the addition of new cliques. The final diameter of the network can be set in advance, namely, it is controllable. Assuming that the diameter of the network is n, the network exhibits a logistic structure with (n+1) layers. In this structure, the 0th layer represents the original network and each node of the (m)th layer (1≤m≤n) corresponds to a clique in the (m−1)th layer. In the growth process of the network, we ensure that any (m)th layer network is composed of overlapping cliques. Any node in an (m)th layer network corresponds to an m-depth community in the original network, and the diameter of an m-depth community is m. Therefore, the (n−1)th layer network will contain only one clique, the (n)th layer network will contain only one node, and the diameter of the corresponding original network is n. Then an ideal n-depth clique network will be obtained. Based on the ideal n-depth clique network model, we construct a bus transport network model with an ideal n-depth clique network topology (ICNBTN). Moreover, our study compares this model with the real bus transport network (RealBTN) of three major cities in China and a recently introduced bus transport network model (BTN) whose network properties correspond well with those of real BTNs. The network properties of the ICNBTN are much closer to those of the RealBTN than those of the BTN are. At the same time, the ICNBTN has higher clustering extent of bus routes, smaller network diameter, which corresponds to shorter maximum transfer times in a bus network, and lower average shortest path time coefficient than the BTN and the RealBTN. Therefore, the ICNBTN can achieve higher transfer efficiency for a bus transport system.

Suggested Citation

  • Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4660-4672
    DOI: 10.1016/j.physa.2011.06.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111005255
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.06.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Chun-Hua & Zhang, Zeng-Ping & Chang, Hui & Tao, Jian-Ru & Chen, Zhuo-Hui & Dai, Yun-Long & Zhang, Wei & He, Da-Ren, 2008. "A kind of collaboration–competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1411-1420.
    2. Wang, Yong-Li & Zhou, Tao & Shi, Jian-Jun & Wang, Jian & He, Da-Ren, 2009. "Empirical analysis of dependence between stations in Chinese railway network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2949-2955.
    3. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    4. Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo & Cai, Kai-Quan, 2010. "Evolution of Chinese airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3922-3931.
    5. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    6. Tomassini, Marco & Luthi, Leslie, 2007. "Empirical analysis of the evolution of a scientific collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 750-764.
    7. Xu, Xinping & Hu, Junhui & Liu, Feng & Liu, Lianshou, 2007. "Scaling and correlations in three bus-transport networks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 441-448.
    8. Roohi, A.A. & Shirazi, A.H. & Kargaran, A. & Jafari, G.R., 2010. "Local model of a scientific collaboration in physics network compared with the global model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5530-5537.
    9. Chang, Hui & Su, Bei-Bei & Zhou, Yue-Ping & He, Da-Ren, 2007. "Assortativity and act degree distribution of some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 687-702.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Guodong & Yang Yu & Zhang Xuefeng & Li Chi, 2017. "Network-Based Analysis of Requirement Change in Customized Complex Product Development," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1125-1149, July.
    2. Tang, Jinjun & Li, Zhitao & Gao, Fan & Zong, Fang, 2021. "Identifying critical metro stations in multiplex network based on D–S evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    4. Na Zhang & Yu Yang & Yujie Zheng & Jiafu Su, 2019. "Module partition of complex mechanical products based on weighted complex networks," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1973-1998, April.
    5. Chansoo Kim & Segun Goh & Myeong Seon Choi & Keumsook Lee & M. Y. Choi, 2020. "Hub-Periphery Hierarchy in Bus Transportation Networks: Gini Coefficients and the Seoul Bus System," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    6. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    7. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    8. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    9. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    10. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
    11. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Baoyu & Feng, Shumin & Nie, Cen, 2017. "Bus transport network of Shenyang considering competitive and cooperative relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 259-268.
    2. Feng, Ai-Xia & Fu, Chun-Hua & Xu, Xiu-Lian & Zhou, Yue-Ping & Chang, Hui & Wang, Jian & He, Da-Ren & Feng, Guo-Lin, 2012. "An extended clique degree distribution and its heterogeneity in cooperation–competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2454-2462.
    3. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    4. Sui, Yi & Shao, Fengjing & Yu, Xiang & Sun, Rencheng & Li, Shujing, 2019. "Public transport network model based on layer operations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 984-995.
    5. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    6. Junhong Hu & Mingshu Yang & Yunzhu Zhen, 2024. "A Review of Resilience Assessment and Recovery Strategies of Urban Rail Transit Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    7. Dong-Joon Kang & Su-Han Woo, 2017. "Liner shipping networks, port characteristics and the impact on port performance," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 274-295, June.
    8. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    10. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
    11. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    12. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    13. Xu, Xiu-Lian & Fu, Chun-Hua & Chang, Hui & He, Da-Ren, 2011. "An evolution model of complex systems with simultaneous cooperation and competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3719-3726.
    14. Zhang, Yanjie & Ayyub, Bilal M. & Saadat, Yalda & Zhang, Dongming & Huang, Hongwei, 2020. "A double-weighted vulnerability assessment model for metrorail transit networks and its application in Shanghai metro," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    15. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    16. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    17. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    18. Psaltoglou, Artemis & Calle, Eusebi, 2018. "Enhanced connectivity index – A new measure for identifying critical points in urban public transportation networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 22-32.
    19. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    20. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4660-4672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.