IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v59y2014icp346-356.html
   My bibliography  Save this article

Scenario-based CO2 emissions reduction potential and energy use in Republic of Korea’s passenger vehicle fleet

Author

Listed:
  • Ko, Ahyun
  • Myung, Cha-Lee
  • Park, Simsoo
  • Kwon, Sangil

Abstract

This study explores the carbon dioxide (CO2) emissions reduction potential of passenger vehicles in Republic of Korea, by assuming a number of CO2 reduction routes. Historical data pertaining to important factors affecting the CO2 emissions of passenger vehicles, such as the number of registered vehicles, annual mileage, and average CO2 emissions per vehicle, were analyzed to predict the extent by which these factors would change in 2020. The results show that the total CO2 emissions from passenger vehicles in 2015 would be approximately 37.1Mton, assuming automobile manufacturers will meet the regulations for CO2 emissions reductions for 2015. The CO2 emissions reduction route is determined in accordance with a hypothetical regulation for CO2 emissions reductions in 2020. If the CO2 emissions rates of new passenger vehicles are reduced by 3–7% per year after complying with the 2015 regulation, then total CO2 emissions and required energy would be approximately 36.5–38.6Mton and 12.9–13.6Mtoe, respectively. Also, if the current fuel economy competition persists until 2020, the CO2 emissions reductions will follow the plausible reduction route and consequently reach 35.1Mton CO2 and 12.4Mtoe energy in 2020. As a result, in order to reduce the total CO2 emissions of passenger vehicles in 2020 (compared with 2015), the value of regulated CO2 emissions in 2020 should be set to less than 103g/km per passenger vehicle.

Suggested Citation

  • Ko, Ahyun & Myung, Cha-Lee & Park, Simsoo & Kwon, Sangil, 2014. "Scenario-based CO2 emissions reduction potential and energy use in Republic of Korea’s passenger vehicle fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 346-356.
  • Handle: RePEc:eee:transa:v:59:y:2014:i:c:p:346-356
    DOI: 10.1016/j.tra.2013.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856413002437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2013.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeon, Eui-Chan & Myeong, Soojeong & Sa, Jae-Whan & Kim, Jinsu & Jeong, Jae-Hak, 2010. "Greenhouse gas emission factor development for coal-fired power plants in Korea," Applied Energy, Elsevier, vol. 87(1), pages 205-210, January.
    2. Small, Kenneth A., 2012. "Energy policies for passenger motor vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 874-889.
    3. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    4. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    5. Zervas, Efthimios & Poulopoulos, Stavros & Philippopoulos, Constantinos, 2006. "CO2 emissions change from the introduction of diesel passenger cars: Case of Greece," Energy, Elsevier, vol. 31(14), pages 2915-2925.
    6. Kim, Hoseok & Shin, Eui-soon & Chung, Woo-jin, 2011. "Energy demand and supply, energy policies, and energy security in the Republic of Korea," Energy Policy, Elsevier, vol. 39(11), pages 6882-6897.
    7. Oliver, Hongyan H. & Gallagher, Kelly Sims & Tian, Donglian & Zhang, Jinhua, 2009. "China's fuel economy standards for passenger vehicles: Rationale, policy process, and impacts," Energy Policy, Elsevier, vol. 37(11), pages 4720-4729, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    2. Marasco, Addolorata & Romano, Alessandro, 2018. "Inter-port interactions in the Le Havre-Hamburg range: A scenario analysis using a nonautonomous Lotka Volterra model," Journal of Transport Geography, Elsevier, vol. 69(C), pages 207-220.
    3. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    4. Geng, Shuai & Lin, Lijun, 2018. "The extensible evaluation framework of urban green house gas emission reduction responsibility: A case of Shandong province in China," Energy, Elsevier, vol. 162(C), pages 171-184.
    5. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    6. Jigu Seo & Junhong Park & Yunjung Oh & Sungwook Park, 2016. "Estimation of Total Transport CO 2 Emissions Generated by Medium- and Heavy-Duty Vehicles (MHDVs) in a Sector of Korea," Energies, MDPI, vol. 9(8), pages 1-13, August.
    7. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    2. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    3. Chavez-Baeza, Carlos & Sheinbaum-Pardo, Claudia, 2014. "Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area," Energy, Elsevier, vol. 66(C), pages 624-634.
    4. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    5. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    6. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    7. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    8. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    9. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    10. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    11. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    12. Martin, Elliot & Shaheen, Susan & Lipman, Timothy & Camel, Madonna, 2014. "Evaluating the public perception of a feebate policy in California through the estimation and cross-validation of an ordinal regression model," Transport Policy, Elsevier, vol. 33(C), pages 144-153.
    13. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    14. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.
    15. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    16. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    17. Lee, Juyong & Cho, Youngsang, 2020. "Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea," Energy Policy, Elsevier, vol. 136(C).
    18. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    19. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    20. Stefan Niederhafner, 2014. "The Korean Energy and GHG Target Management System: An Alternative to Kyoto-Protocol Emissions Trading Systems?," TEMEP Discussion Papers 2014118, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Sep 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:59:y:2014:i:c:p:346-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.