IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i10p1031-1042.html
   My bibliography  Save this article

The future tourism mobility of the world population: Emission growth versus climate policy

Author

Listed:
  • Dubois, Ghislain
  • Peeters, Paul
  • Ceron, Jean-Paul
  • Gössling, Stefan

Abstract

Much of global passenger transport is linked to tourism. The sector is therefore of interest in studying global mobility trends and transport-related emissions. In 2005, tourism was responsible for around 5% of all CO2 emissions, of which 75% were caused by passenger transport. Given the rapid growth in tourism, with 1.6 billion international tourist arrivals predicted by 2020 (up from 903 million in 2007), it is clear that the sector will contribute to rapidly growing emission levels, and increasingly interfere with global climate policy. This is especially true under climate stabilisation and “avoiding dangerous climate change” objectives, implying global emission reductions in the order of −50% to −80% by 2050, compared to 2000. Based on three backcasting scenarios, and using techniques integrating quantitative and qualitative elements, this paper discusses the options for emission reductions in the tourism sector and the consequences of mitigation for global tourism-related mobility by 2050. It ends with a discussion of the policy implications of the results.

Suggested Citation

  • Dubois, Ghislain & Peeters, Paul & Ceron, Jean-Paul & Gössling, Stefan, 2011. "The future tourism mobility of the world population: Emission growth versus climate policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1031-1042.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:10:p:1031-1042
    DOI: 10.1016/j.tra.2009.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856409001244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2009.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akerman, Jonas & Hojer, Mattias, 2006. "How much transport can the climate stand?--Sweden on a sustainable path in 2050," Energy Policy, Elsevier, vol. 34(14), pages 1944-1957, September.
    2. Schafer, Andreas & Victor, David G., 1999. "Global passenger travel: implications for carbon dioxide emissions," Energy, Elsevier, vol. 24(8), pages 657-679.
    3. Martin Parry & Jean Palutikof & Clair Hanson & Jason Lowe, 2008. "Squaring up to reality," Nature Climate Change, Nature, vol. 1(806), pages 68-71, June.
    4. Tight, M.R. & Bristow, A.L. & Pridmore, A. & May, A.D., 2005. "What is a sustainable level of CO2 emissions from transport activity in the UK in 2050?," Transport Policy, Elsevier, vol. 12(3), pages 235-244, May.
    5. Anderson, Dennis & Cavendish, William, 2001. "Dynamic Simulation and Environmental Policy Analysis: Beyond Comparative Statistics and the Environmental Kuznets Curve," Oxford Economic Papers, Oxford University Press, vol. 53(4), pages 721-746, October.
    6. Vedantham, Anu & Oppenheimer, Michael, 1998. "Long-term scenarios for aviation: Demand and emissions of CO2 and NOx," Energy Policy, Elsevier, vol. 26(8), pages 625-641, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaman, Khalid & Shahbaz, Muhammad & Loganathan, Nanthakumar & Raza, Syed Ali, 2016. "Tourism development, energy consumption and Environmental Kuznets Curve: Trivariate analysis in the panel of developed and developing countries," Tourism Management, Elsevier, vol. 54(C), pages 275-283.
    2. Gössling, Stefan, 2013. "Urban transport transitions: Copenhagen, City of Cyclists," Journal of Transport Geography, Elsevier, vol. 33(C), pages 196-206.
    3. Peeters, Paul, 2012. "A clear path towards sustainable mass tourism? Rejoinder to the paper ‘Organic, incremental and induced paths to sustainable mass tourism convergence’ by David B. Weaver," Tourism Management, Elsevier, vol. 33(5), pages 1038-1041.
    4. Muhammad Haseeb & Muhammad Azam, 2021. "Dynamic nexus among tourism, corruption, democracy and environmental degradation: a panel data investigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5557-5575, April.
    5. Filimonau, Viachaslau & Dickinson, Janet & Robbins, Derek & Reddy, Maharaj Vijay, 2013. "The role of ‘indirect’ greenhouse gas emissions in tourism: Assessing the hidden carbon impacts from a holiday package tour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 78-91.
    6. Osorio, Pilar & Cadarso, María-Ángeles & Tobarra, María-Ángeles & García-Alaminos, Ángela, 2023. "Carbon footprint of tourism in Spain: Covid-19 impact and a look forward to recovery," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 303-318.
    7. Sun, Yunpeng & Anwar, Ahsan & Razzaq, Asif & Liang, Xueping & Siddique, Muhammad, 2022. "Asymmetric role of renewable energy, green innovation, and globalization in deriving environmental sustainability: Evidence from top-10 polluted countries," Renewable Energy, Elsevier, vol. 185(C), pages 280-290.
    8. Shaun Vorster & Marius Ungerer & Jako Volschenk, 2012. "2050 Scenarios for Long-Haul Tourism in the Evolving Global Climate Change Regime," Sustainability, MDPI, vol. 5(1), pages 1-51, December.
    9. Hall, C. Michael & Amelung, Bas & Cohen, Scott & Eijgelaar, Eke & Gössling, Stefan & Higham, James & Leemans, Rik & Peeters, Paul & Ram, Yael & Scott, Daniel & Aall, Carlo & Abegg, Bruno & Araña, Jorg, 2015. "No time for smokescreen skepticism: A rejoinder to Shani and Arad," Tourism Management, Elsevier, vol. 47(C), pages 341-347.
    10. Philipp Schlemmer & Cornelia Blank & Bartosz Bursa & Markus Mailer & Martin Schnitzer, 2019. "Does Health-Oriented Tourism Contribute to Sustainable Mobility?," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    11. Peeters, Paul M. & Eijgelaar, Eke, 2014. "Tourism's climate mitigation dilemma: Flying between rich and poor countries," Tourism Management, Elsevier, vol. 40(C), pages 15-26.
    12. José María Martín Martín & Jose Manuel Guaita Martínez & Valentín Molina Moreno & Antonio Sartal Rodríguez, 2019. "An Analysis of the Tourist Mobility in the Island of Lanzarote: Car Rental Versus More Sustainable Transportation Alternatives," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    13. Sudeshna Ghosh, 2022. "Effects of tourism on carbon dioxide emissions, a panel causality analysis with new data sets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3884-3906, March.
    14. Paul Timms & Miles Tight & David Watling, 2014. "Imagineering Mobility: Constructing Utopias for Future Urban Transport," Environment and Planning A, , vol. 46(1), pages 78-93, January.
    15. Gössling, Stefan & Cohen, Scott, 2014. "Why sustainable transport policies will fail: EU climate policy in the light of transport taboos," Journal of Transport Geography, Elsevier, vol. 39(C), pages 197-207.
    16. Roberto Rendeiro Martín-Cejas, 2022. "The Influence of the Resident Subsidy on Regional Carrier Economies and the Environment in the Canary Interisland Air Traffic Network," Tourism and Hospitality, MDPI, vol. 3(3), pages 1-15, June.
    17. Aaron Gutiérrez & Daniel Miravet, 2016. "The Determinants of Tourist Use of Public Transport at the Destination," Sustainability, MDPI, vol. 8(9), pages 1-16, September.
    18. Helena Sustar & Miloš N. Mladenović & Moshe Givoni, 2020. "The Landscape of Envisioning and Speculative Design Methods for Sustainable Mobility Futures," Sustainability, MDPI, vol. 12(6), pages 1-24, March.
    19. Can Tansel TUGCU & Mert TOPCU, 2018. "The impact of carbon dioxide (CO2) emissions on tourism: Does the source of emission matter?," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(614), S), pages 125-136, Spring.
    20. Sun, Ya-Yen, 2016. "Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions," Tourism Management, Elsevier, vol. 55(C), pages 326-336.
    21. Davison, Lisa & Ryley, Tim, 2016. "An examination of the role of domestic destinations in satisfying holiday demands," Journal of Transport Geography, Elsevier, vol. 51(C), pages 77-84.
    22. Juan Carlos Martin & J. Rosa Marrero-Rodríguez & Pedro Moreira & Concepción Román & Agustín Santana, 2016. "How Access Transport Mode to a World Heritage City Affects Visitors' Experienced Quality," Tourism Economics, , vol. 22(2), pages 207-226, April.
    23. Yalan Shi & Miaojing Yu, 2021. "Assessing the Environmental Impact and Cost of the Tourism-Induced CO 2 , NO x , SO x Emission in China," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    24. Paul Peeters & Martin Landré, 2011. "The Emerging Global Tourism Geography—An Environmental Sustainability Perspective," Sustainability, MDPI, vol. 4(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    2. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
    3. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    4. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    5. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    6. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    7. Balsalobre Lorente, Daniel & Álvarez-Herránz, Agustín & Baños Torres, José, 2016. "La innovación y la sustitución energética como medidas de corrección medioambiental en países de la OCDE/Innovation and Energy Substitution as Measures of Environmental Correction in OECD Countries," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 34, pages 235-260, Enero.
    8. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    9. repec:dau:papers:123456789/9263 is not listed on IDEAS
    10. Weixin Yang & Lingguang Li, 2017. "Energy Efficiency, Ownership Structure, and Sustainable Development: Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-26, June.
    11. Managi, Shunsuke, 2006. "Are there increasing returns to pollution abatement? Empirical analytics of the Environmental Kuznets Curve in pesticides," Ecological Economics, Elsevier, vol. 58(3), pages 617-636, June.
    12. Chèze, Benoît & Gastineau, Pascal & Chevallier, Julien, 2011. "Forecasting world and regional aviation jet fuel demands to the mid-term (2025)," Energy Policy, Elsevier, vol. 39(9), pages 5147-5158, September.
    13. Poudenx, Pascal, 2008. "The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 901-909, July.
    14. Orlando Reyes. & Roberto Escalante. & Anna Matas., 2010. "La demanda de gasolinas en México: Efectos y alternativas ante el cambio climático," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 32(1), pages 83-111, Enero-Jun.
    15. Hyunsu Choi & Dai Nakagawa & Ryoji Matsunaka & Tetsuharu Oba & Jongjin Yoon, 2013. "Research on the causal relationship between urban density, travel behaviours, and transportation energy consumption by economic level," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(3), pages 362-384, November.
    16. Annegrete Bruvoll & Taran Fæhn & Birger Strøm, 2003. "Quantifying Central Hypotheses on Environmental Kuznets Curves for a Rich Economy: A Computable General Equilibrium Study," Scottish Journal of Political Economy, Scottish Economic Society, vol. 50(2), pages 149-173, May.
    17. Runa Sarkar, 2008. "Public policy and corporate environmental behaviour: a broader view," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 15(5), pages 281-297, September.
    18. repec:bla:opecrv:v:33:y:2009:i:1:p:23-46 is not listed on IDEAS
    19. Gusdorf, Francois & Hallegatte, Stephane, 2007. "Behaviors and housing inertia are key factors in determining the consequences of a shock in transportation costs," Energy Policy, Elsevier, vol. 35(6), pages 3483-3495, June.
    20. Valdes, Victor, 2015. "Determinants of air travel demand in Middle Income Countries," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 75-84.
    21. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    22. Kijima, Masaaki & Nishide, Katsumasa & Ohyama, Atsuyuki, 2011. "EKC-type transitions and environmental policy under pollutant uncertainty and cost irreversibility," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 746-763, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:10:p:1031-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.