IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v35y2001i4p289-308.html
   My bibliography  Save this article

Multiple fleet aircraft schedule recovery following hub closures

Author

Listed:
  • Thengvall, Benjamin G.
  • Yu, Gang
  • Bard, Jonathan F.

Abstract

This paper presents three multi-commodity network-type models for determining a recovery schedule for all aircraft operated by a large carrier following a hub closure. The first is a pure network with side constraints, the second is a generalized network, and the third is a pure network with side constraints in which the time horizon is discretized. Each model allows for cancellations, delays, ferry flights, and substitution between fleets and subfleets. In the first two cases, the objective is to maximize a "profit" function which includes an incentive to maintain as much of the original aircraft routings as possible. In the third case, the objective is to minimize the sum of cancellation and delay costs. After comparing solution quality and computation times for each of the three models, the first was seen to outperform the others and was singled out for further analysis. Results for a comprehensive set of scenarios are presented along with ideas for continuing work.

Suggested Citation

  • Thengvall, Benjamin G. & Yu, Gang & Bard, Jonathan F., 2001. "Multiple fleet aircraft schedule recovery following hub closures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 289-308, May.
  • Handle: RePEc:eee:transa:v:35:y:2001:i:4:p:289-308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(99)00059-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shangyao Yan & Chung-Gee Lin, 1997. "Airline Scheduling for the Temporary Closure of Airports," Transportation Science, INFORMS, vol. 31(1), pages 72-82, February.
    2. Teodorovic, Dusan & Guberinic, Slobodan, 1984. "Optimal dispatching strategy on an airline network after a schedule perturbation," European Journal of Operational Research, Elsevier, vol. 15(2), pages 178-182, February.
    3. Gerald G. Brown & Robert F. Dell & R. Kevin Wood, 1997. "Optimization and Persistence," Interfaces, INFORMS, vol. 27(5), pages 15-37, October.
    4. Yan, Shangyao & Tu, Yu-ping, 1997. "Multifleet routing and multistop flight scheduling for schedule perturbation," European Journal of Operational Research, Elsevier, vol. 103(1), pages 155-169, November.
    5. Ahmad I. Z. Jarrah & Gang Yu & Nirup Krishnamurthy & Ananda Rakshit, 1993. "A Decision Support Framework for Airline Flight Cancellations and Delays," Transportation Science, INFORMS, vol. 27(3), pages 266-280, August.
    6. Yan, Shangyao & Young, Hwei-Fwa, 1996. "A decision support framework for multi-fleet routing and multi-stop flight scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 379-398, September.
    7. Michael F. Argüello & Jonathan F. Bard & Gang Yu, 1997. "A Grasp for Aircraft Routing in Response to Groundings and Delays," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 211-228, October.
    8. Ananda Rakshit & Nirup Krishnamurthy & Gang Yu, 1996. "System Operations Advisor: A Real-Time Decision Support System for Managing Airline Operations at United Airlines," Interfaces, INFORMS, vol. 26(2), pages 50-58, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas G. Rupp & George M. Holmes & Jeff DeSimone, 2005. "Airline Schedule Recovery after Airport Closures: Empirical Evidence since September 11," Southern Economic Journal, John Wiley & Sons, vol. 71(4), pages 800-820, April.
    2. Benjamin G. Thengvall & Jonathan F. Bard & Gang Yu, 2003. "A Bundle Algorithm Approach for the Aircraft Schedule Recovery Problem During Hub Closures," Transportation Science, INFORMS, vol. 37(4), pages 392-407, November.
    3. Nicholas G. Rupp & George M. Holmes & Jeff DeSimone, "undated". "Airline Schedule Recovery after Airport Closures: Empirical Evidence since September 11th," Working Papers 0207, East Carolina University, Department of Economics.
    4. Wenkai Li & Mark Wallace, 2012. "Disruption Management for Commercial Aviation," Working Papers EMS_2012_18, Research Institute, International University of Japan.
    5. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    6. Lavanya Marla & Bo Vaaben & Cynthia Barnhart, 2017. "Integrated Disruption Management and Flight Planning to Trade Off Delays and Fuel Burn," Transportation Science, INFORMS, vol. 51(1), pages 88-111, February.
    7. Huang, Zhouchun & Luo, Xiaodong & Jin, Xianfei & Karichery, Sureshan, 2022. "An iterative cost-driven copy generation approach for aircraft recovery problem," European Journal of Operational Research, Elsevier, vol. 301(1), pages 334-348.
    8. G Zhu & J F Bard & G Yu, 2005. "Disruption management for resource-constrained project scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 365-381, April.
    9. Alderighi, Marco & Gaggero, Alberto A., 2018. "Flight cancellations and airline alliances: Empirical evidence from Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 90-101.
    10. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    11. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    12. van Lieshout, R.N. & Mulder, J. & Huisman, D., 2016. "The Vehicle Rescheduling Problem with Retiming," Econometric Institute Research Papers EI2016-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. S Yan & C-H Tang & C-H Chen, 2008. "Reassignments of common-use check-in counters following airport incidents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1100-1108, August.
    14. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    15. Vieira, Thiago & De La Vega, Jonathan & Tavares, Roberto & Munari, Pedro & Morabito, Reinaldo & Bastos, Yan & Ribas, Paulo César, 2021. "Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    16. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    17. Vaaben, Bo & Larsen, Jesper, 2015. "Mitigation of airspace congestion impact on airline networks," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 54-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    2. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    3. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    4. Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.
    5. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    6. T. Andersson * & P. Värbrand, 2004. "The flight perturbation problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(2), pages 91-117, March.
    7. Stojkovic, Goran & Soumis, François & Desrosiers, Jacques & Solomon, Marius M., 2002. "An optimization model for a real-time flight scheduling problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 779-788, November.
    8. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    9. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    10. Jian Yang & Xiangtong Qi & Gang Yu, 2005. "Disruption management in production planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 420-442, August.
    11. Shangyao Yan & Chin-Hui Tang & Chong-Lan Shieh, 2005. "A Simulation Framework for Evaluating Airline Temporary Schedule Adjustments Following Incidents," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(3), pages 189-211, March.
    12. S Yan & C-H Tang & C-H Chen, 2008. "Reassignments of common-use check-in counters following airport incidents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1100-1108, August.
    13. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    14. Hu, Yuzhen & Song, Yan & Zhao, Kang & Xu, Baoguang, 2016. "Integrated recovery of aircraft and passengers after airline operation disruption based on a GRASP algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 97-112.
    15. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    16. Yan, Shangyao & Young, Hwei-Fwa, 1996. "A decision support framework for multi-fleet routing and multi-stop flight scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 379-398, September.
    17. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    18. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    19. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    20. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:35:y:2001:i:4:p:289-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.